• Title/Summary/Keyword: Multi-layer materials

Search Result 500, Processing Time 0.025 seconds

Photosensitive Materials for Bit-Type 3D Optical Memory (비트타입 3차원 광메모리용 저장매체 연구)

  • Lee, Myeong-Gyu;Kim, Eun-Gyeong;Im, Gi-Su
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.223-224
    • /
    • 2007
  • 광기록의 역사는 1980년대초 Sony와 Philips가 공동 개발한 CD (compact disc: 640MB)의 출현으로부터 시작하여 1996년의 DVD (digital versatile disc: 4.7GB)를 거쳐 최근의 BD (Blu-ray disc: >20GB)에까지 이르고 있다. Read-only memory, recordable, rewritable 등 다양한 저장 및 재생방식이 존재하는데, 이는 레이저 조사에 의한 기록매체의 특성변화의 가역성 (reversibility)에 의존하므로 저장 및 재생방식에 따라 저장매체 또한 다르게 된다. 기록용량의 증가는 레이저의 파장이 짧아지고 동시에 사용된 렌즈의 개구수 (NA: Numerical aperture)가 증가함에 따른 빔 spot size의 감소에 기인한다. 회절한계를 극복하여 빔의 spot size를 줄이고자 하는 연구는 현재도 전세계적으로 활발히 이루어지고 있고 이러한 노력의 일환으로 어느 정도의 추가적인 저장용량 증가는 가능할 수 있으나, 2차원 방식으로는 대용량 광정보기록 (수백 GB ${\sim}$ TB급)의 실현은 불가능하다는 것이 일반적인 예상이다. 한편 장기적으로 기존의 2차원 정보기록방식을 대체하고 저장용량을 획기적으로 증가시킬 수 있는 bit-type 3차원 광정보기록의 개념이 1990년을 전.후로 처음으로 제시되었다. 이는 2차원 bit 정보가 수십 내지 수백 개의 다층 (multi-layer) 형태로 기록되는 방식인데, 그동안 산업체의 관심이 상대적으로 높지 않았던 이유는 영화, 음악 등 엔터테인먼트 시장성 확대를 위해 Blu-ray disc나 HD-DVD에 대한 연구개발에 치중해왔기 때문이다. 하지만 최근 급변하는 정보시스템 서비스 환경 속에서 정보유통량이 기하급수적으로 증가하고 있고 개인이 취급하는 정보량도 2010년경에는 수백 GB 단위가 될 것으로 예상되고 있으며 디지털 방송, 네트워크를 기반으로 한 서비스 수요 뿐 만 아니라 전자도서관이나 VOD (Video on Demand) 서비스 사업에 필수적인 수 TB급의 대용량 저장장치에 대한 수요 또한 크게 증가할 것으로 전망된다. 이에 따라 점차 그 물리적 한계에 다다르고 있는 기존의2차원 정보저장방식을 대체하고 저장용량을 획기적으로 증가시킬 수 있는3차원 정보기록(> $10^{13}$ $bits/cm^3$)에 대한 필요성이 대두된다.

  • PDF

VOCs Permeation Property of Composite Hollow Fiber Membranes (중공사 복합막을 이용한 다성분계 휘발성 유기 화합물 투과 특성)

  • Choi, Whee Moon;Cho, Soon Haing;Kim, Soon Tae;Lee, Chung Seop;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • To investigate the performance of VOC separation, composite hollow fiber membrane was prepared which composed of poly (ether imide) support prepared by phase separation method and poly (dimethylsiloxane) coating active layer. The performances of the membranes for the application of recovery process in terms of their morphology, gas permeance test for $N_2$ and $O_2$ gases. Durability against benzene, toluene and xylene was also investigated. And permeation test for multi-component VOCS through the membrane with different feed concentration and stage-cut were investigated. Permeance of PEI supported membrane and the membranes coated with PDMS decreased from 45,000 GPU to 63 GPU and 49,450 to 30 GPU for $N_2$ and $O_2$, respectively. Recovery efficiency and concentration of VOCs in permeate increased with decreasing stage-cut. VOCs concentration in permeate proportionally increased with increasing feed concentration but concentration ratio and recovery efficiency showed any noticeable changes with feed concentration change.

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

Study of High Temperature Corrosion Behavior of Fe-Cr Steel in Sewage Sludge-(SO2-O2-H2O-bal. CO2) mixed Gas Environment (하수슬러지-(SO2-O2-H2O-bal. CO2) 혼합 가스 분위기에서 Fe-Cr 강의 고온부식거동 연구)

  • Kim, Min Jung;Park, Joo Chang;Ryu, In Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • Two Fe-Cr steels of T22 steel and STS430 steel were corroded at 650 and 750℃ for 100hr in sewage sludge-(0.3% SO2-6% O2-10% H2O-balance CO2) mixed gas environment. T22 steel corroded faster than STS430, indicating that the Cr content significantly influence the corrosion rates. T22 formed thick and non-protective Fe2O3 as the major oxide and Fe3O4 as the minor one. With an increase in corrosion temperature, their corrosion rates increased, being accompanied with formation of pores and cracks in the thickened oxide scales that were non-adherent. STS430 steel formed Fe2O3, Fe3O4 as the outer scale and (Fe, Cr)-O as the inner layer by which its corrosion rate is greatly reduced. Both the T22 and STS430 steel samples formed multi-layered scales by outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions at high-temperature more than 650℃.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • Nam, Jae-Hyeon;Jang, Hye-Yeon;Kim, Tae-Hyeon;Jo, Byeong-Jin
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.

The Origin of the Southeastern United States Continental Margin: Is it Volcanic or Non-Volcanic? (미국남동부 대륙주변부의 기원 : 화산성 혹은 비화산성?)

  • Oh, Jinyong
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.571-577
    • /
    • 1994
  • It has been controversial whether the United States Atlantic margin, which developed during Mesozoic separation of Africa and North America, is a volcanic or non-volcanic rifted margin. To understand its nature, the basement images of multi-channel seismic profiles off the southeastern United States continental margin have been examined. One of prominent results is the presence of seaward-dipping reflector (SDR) wedges, the most diagnostic feature of volcanic rifted margins. Two sets of SDR wedges appear to exist here; one along the basement hinge zone ('the hinge SDR wedge') and another seaward of the East Coast magnetic anomaly ('the outer SDR wedge'). Seaward of the basement hinge zone, the lower crustal high-velocity body previously known as the 7.2 km/s layer and the underlying smooth Moho configuration are also observed. Based on the comparison of these basement images with the crustal structures of the well-known volcanic rifted margin, the southeastern United States Atlantic margin can now be characterized as a typical volcanic rifted margin.

  • PDF

Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System (전자광학카메라 시스템의 열제어계 설계 및 개발)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.798-804
    • /
    • 2009
  • A high-resolution electro-optical camera system, EOS-C, is under development in Satrec Initiative. This system is the mission payload of a 400-kg Earth observation satellite. We designed this system to give improved opto-mechanical and thermal performance compared with a similar camera system to be flown on the DubaiSat-1 system. The thermal control subsystem (TCS) of the EOS-C system uses heaters to meet the opto-mechanical requirements during in-orbit operation and it uses different thermal coating materials and multi-layer insulation (MLI) blankets to minimize the heater power consumption. We performed its thermal analysis for the mission orbit using a thermal analysis model and the result shows that its TCS satisfies the design requirements.

Passive Device Library Implementation of LTCC Multilayer Board for Wireless Communications (무선통신용 LTCC 다층기판의 수동소자 라이브러리 구현)

  • Cho, Hak-Rae;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • This paper has designed, fabricated, and analyzed the passive devices realized using low temperature co-fired ceramic (LTCC) multi layer substrates by dividing into the shrinkage process and the non-shrinkage process. Using two types of ceramic materials with dielectric constant 7 or 40, we have fabricated the same shape of various elements in 2 different processes and compared the characteristics. For the substrate of dielctric constant 40, compared with the shrinkage process which has 17% shrink in the X and Y directions with 36% shrink in the Z direction, the non-shrinkage process has 43% shrink in the Z direction without shrink in the X and Y directions, so high dimensional accuracy and surface flatness can be obtained. The inductances and capacitances of the fabricated elements are estimated from measurement using empirical analysis equations of parameters and implemented as a design library. Depending on the substrate and the process, the inductance and capacitance depending on the turn number of winding and unit area have been measured, and empirical polynomials are proposed to predict element values.

Evaluation of analytical method for polybrominated diphenyl ethers (PBDEs) in manufactured products waste (제품폐기물 중 폴리브롬화에테르류 (PBDEs) 분석방법 비교 연구)

  • Shin, Sun Kyoung;Kim, Hyoung Seop;Jeon, Tae Wan;Kim, Tae Seung;Kim, Jong Ha;Lee, Jeong Ah
    • Analytical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • In this study, soxhlet extraction and dissolution-precipitation method are used for separating analyte from polymer materials. In soxhlet extraction efficiency test, it has been found that the DCM, Toluene, THF, and mixtures Acetone/Hexane (1:4, v/v) gave good extraction efficiency, while the use of the ethyl ether, acetone/ethyl ether (1:4, v/v), acetone/hexane (1:1, v/v), DCM/hexane (1:1, v/v) resulted in significantly lower values. In case of dissolution-precipitation method, there is no considerable difference with used different dissolving solvent. The elution amount of multi layer silica and Florisil column were determined with hexane 250 mL and 70 mL of hexane, respectively. Range of PBDE in real waste plastics was N.D.~1,028 ppm.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.