Browse > Article

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향  

Nam, Jae-Hyeon (충북대학교 신소재공학과)
Jang, Hye-Yeon (충북대학교 신소재공학과)
Kim, Tae-Hyeon (충북대학교 신소재공학과)
Jo, Byeong-Jin (충북대학교 신소재공학과)
Publication Information
Ceramist / v.21, no.2, 2018 , pp. 4-18 More about this Journal
Abstract
Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.
Keywords
Synaptic transistor; Channel materials; Dielectric; Synaptic plasticity; Neuromorphic chip;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, G. et al. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 6, 23578 (2016).   DOI
2 Wan, C. J., Zhu, L. Q., Wan, X., Shi, Y. & Wan, Q. Organic/Inorganic Hybrid Synaptic Transistors Gated by Proton Conducting Methylcellulose Films. Appl. Phys. Lett. 108, 043508 (2016).   DOI
3 Wang, J. et al. Synaptic Computation Demonstrated in a Two-Synapse Network Based on Top-Gate Electric-Double-Layer Synaptic Transistors. IEEE Electron Device Lett. 38, 1496-1499 (2017).   DOI
4 Guo, L. Q., Zhu, L. Q., Ding, J. N. & Huang, Y. K. Paired-Pulse Facilitation Achieved in Protonic/Electronic Hybrid Indium Gallium Zinc Oxide Synaptic Transistors. AIP Adv. 5, 087112 (2015).   DOI
5 Zhou, J., Liu, N., Zhu, L., Shi, Y. & Wan, Q. Energy-Efficient Artificial Synapses Based on Flexible IGZO Electric-Double-Layer Transistors. IEEE Electron Device Lett. 36, 198-200 (2015).   DOI
6 Wan, X., Feng, P., Wu, G. D., Shi, Y. & Wan, Q. Simulation of Laterally Coupled InGaZnO4-Based Electric-Double-Layer Transistors for Synaptic Electronics. IEEE Electron Device Lett. 36, 204-206 (2015).   DOI
7 Shao, F., Yang, Y., Zhu, L. Q., Feng, P. & Wan, Q. Oxide-Based Synaptic Transistors Gated by Sol-Gel Silica Electrolytes. ACS Appl. Mater. Interfaces 8, 3050-3055 (2016).   DOI
8 Kim, Y.-M., Kim, E.-J., Lee, W.-H., Oh, J.-Y. & Yoon, S.-M. Short-Term and Long-Term Memory Operations of Synapse Thin-Film Transistors Using an In-Ga-Zn-O Active Channel and a Poly(4-Vinylphenol)-Sodium ${\beta}$-Alumina Electrolytic Gate Insulator. RSC Adv. 6, 52913-52919 (2016).   DOI
9 Wan, C. J. et al. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors. ACS Appl. Mater. Interfaces 8, 9762-9768 (2016).   DOI
10 Di Lauro, M. et al. Liquid-Gated Organic Electronic Devices Based on High-Performance Solution-Processed Molecular Semiconductor. Adv. Electron. Mater. 3, 1700159 (2017).   DOI
11 Kong, L.-an et al. Long-Term Synaptic Plasticity Simulated in Ionic Liquid/Polymer Hybrid Electrolyte Gated Organic Transistors. Org. Electron. 47, 126-132 (2017).   DOI
12 Qian, C. et al. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. ACS Appl. Mater. Interfaces 8, 26169-26175 (2016).   DOI
13 Kim, C. H., Sung, S. & Yoon, M. H. Synaptic Organic Transistors with a Vacuum-Deposited Charge-Trapping Nanosheet. Sci. Rep. 6, 33355 (2016).   DOI
14 Zang, Y., Shen, H., Huang, D., Di, C.-A. & Zhu, D. A Dual-Organic-Transistor-Based Tactile-Perception System with Signal-Processing Functionality. Adv. Mater. 29, 1606088 (2017).   DOI
15 Guo, Z., Guo, L., Zhu, L. & Zhu, Y. Short-Term Synaptic Plasticity Mimicked on Ionic/Electronic Hybrid Oxide Synaptic Transistor Gated by Nanogranular $SiO_2$ Films. J. Mater. Sci. Technol. 30, 1141-1144 (2014).   DOI
16 Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial Synapse Network on Inorganic Proton Conductor for Neuromorphic Systems. Nat. Commun. 5, 3158 (2014).   DOI
17 Kaneko, Y., Nishitani, Y. & Ueda, M. Ferroelectric Artificial Synapses for Recognition of a Multishaded Image. IEEE Trans. Electron Devices 61, 2827-2833 (2014).   DOI
18 Guo, L., Wan, Q., Wan, C., Zhu, L. & Shi, Y. Short-Term Memory to Long-Term Memory Transition Mimicked in IZO Homojunction Synaptic Transistors. IEEE Electron Device Lett. 34, 1581-1583 (2013).   DOI
19 Wu, G., Wan, C., Zhou, J., Zhu, L. & Wan, Q. Low-Voltage Protonic/Electronic Hybrid Indium Zinc Oxide Synaptic Transistors on Paper Substrates. Nanotechnology 25, 094001 (2014).   DOI
20 Dai, M. et al. Realization of Tunable Artificial Synapse and Memory Based on Amorphous Oxide Semiconductor Transistor. Sci. Rep. 7, 10997 (2017).   DOI
21 Yang, Y., He, Y., Nie, S., Shi, Y. & Wan, Q. Light Stimulated IGZO-Based Electric-Double-Layer Transistors for Photoelectric Neuromorphic Devices. IEEE Electron Device Lett. 39, 897-900 (2018).   DOI
22 Wang, J. et al. Long-Term Depression Mimicked in an IGZO-Based Synaptic Transistor. IEEE Electron Device Lett. 38, 191-194 (2017).   DOI
23 Yang, P. et al. Synaptic Transistor with a Reversible and Analog Conductance Modulation Using a Pt/HfOx/n-IGZO Memcapacitor. Nanotechnology 28, 225201 (2017).   DOI
24 Pillai, P. B. & De Souza, M. M. Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. ACS Appl. Mater. Interfaces 9, 1609-1618 (2017).   DOI
25 Wen, J. et al. Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor. ACS Appl. Mater. Interfaces 9, 37064-37069 (2017).   DOI
26 Fu, Y. M., Zhu, L. Q., Wen, J., Xiao, H. & Liu, R. Mixed Protonic and Electronic Conductors Hybrid Oxide Synaptic Transistors. J. Appl. Phys. 121, 205301 (2017).   DOI
27 Balakrishna Pillai, P., Kumar, A., Song, X. & De Souza, M. M. Diffusion-Controlled Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 10, 9782-9791 (2018).   DOI
28 John, R. A. et al. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing. Small 13, 1701193 (2017).   DOI
29 Li, H. K. et al. A Light-Stimulated Synaptic Transistor with Synaptic Plasticity and Memory Functions Based on $InGaZnO_x-Al_2O_3$ Thin Film Structure. J. Appl. Phys. 119, 244505 (2016).   DOI
30 Gou, G. et al. Artificial Synapses Based on Biopolymer Electrolyte-Coupled $SnO_2$ Nanowire Transistors. J. Mater. Chem. C 4, 11110-11117 (2016).
31 Zou, C. et al. Polymer-Electrolyte-Gated Nanowire Synaptic Transistors for Neuromorphic Applications. Appl. Phys. A Mater. Sci. Process. 123, 597 (2017).   DOI
32 Feng, P., Du, P., Wan, C., Shi, Y. & Wan, Q. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices. Sci. Rep. 6, 34065 (2016).   DOI
33 Fuller, E. J. et al. Li-Ion Synaptic Transistor for Low Power Analog Computing. Adv. Mater. 29, 1604310 (2017).   DOI
34 Guo, L. Q., Wen, J., Zhu, L. Q., Fu, Y. M. & Xiao, H. Humidity-Dependent Synaptic Plasticity for Proton Gated Oxide Synaptic Transistor. IEEE Electron Device Lett. 38, 1248-1251 (2017).   DOI
35 Wan, C. J. et al. Proton-Conducting Graphene Oxide-Coupled Neuron Transistors for Brain-Inspired Cognitive Systems. Adv. Mater. 28, 3557-3563 (2016).   DOI
36 Wan, C. et al. Indium-Zinc-Oxide Neuron Thin Film Transistors Laterally Coupled by Sodium Alginate Electrolytes. IEEE Trans. Electron Devices 63, 3958-3963 (2016).   DOI
37 Wan, C., Zhu, L., Liu, Y., Shi, Y. & Wan, Q. Laterally Coupled Synaptic Transistors Gated by Proton Conducting Sodium Alginate Films. IEEE Electron Device Lett. 35, 672-674 (2014).   DOI
38 Kim, S., Yoon, J., Kim, H.-D. & Choi, S.-J. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition. ACS Appl. Mater. Interfaces 7, 25479-25486 (2015).   DOI
39 Kim, S. et al. Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol. ACS Nano 11, 2814-2822 (2017).   DOI
40 Qin, S. et al. A Light-Stimulated Synaptic Device Based on Graphene Hybrid Phototransistor. 2D Mater. 4, 035022 (2016).
41 Arnold, A. J. et al. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in $MoS_2$ Transistors. ACS Nano 11, 3110-3118 (2017).   DOI
42 Shen, A. M., Kim, K., Tudor, A., Lee, D. & Chen, Y. Doping Modulated Carbon Nanotube Synapstors for a Spike Neuromorphic Module. Small 11, 1571-1579 (2015).   DOI
43 Kim, Y. & Cho, B. Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI : PCBM Dielectric Layers. Krean J. Mater. Res. 27, 590-596 (2017).   DOI
44 Sangwan, V. K. et al. Multi-Terminal Memtransistors from Polycrystalline Monolayer Molybdenum Disulfide. Nature 554, 500-504 (2018).   DOI
45 Jiang, J. et al. 2D $MoS_2$ Neuromorphic Devices for Brain-Like Computational Systems. Small 13, 1700933 (2017).   DOI
46 Zhu, J. et al. Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics. Adv. Mater. 30, 1800195 (2018).   DOI
47 Tian, H. et al. Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications. Adv. Mater. 28, 4991-4997 (2016).   DOI
48 Tian, H. et al. Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device. ACS Nano 11, 7156-7163 (2017).   DOI
49 Kim, K., Chen, C. L., Truong, Q., Shen, A. M. & Chen, Y. A Carbon Nanotube Synapse with Dynamic Logic and Learning. Adv. Mater. 25, 1693-1698 (2013).   DOI
50 Gao, B. et al. Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems. ACS Nano 8, 6998-7004 (2014).   DOI
51 Shen, A. M. et al. Analog Neuromorphic Module Based on Carbon Nanotube Synapses. ACS Nano 7, 6117-6122 (2013).   DOI
52 Cho, B. et al. Nonvolatile Analog Memory Transistor Based on Carbon Nanotubes and C60 Molecules. Small 9, 2283-2287 (2013).   DOI
53 Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The Missing Memristor Found. Nature 453, 80-83 (2008).   DOI
54 Cheng, P., Sun, K. & Hu, Y. H. Memristive Behavior and Ideal Memristor of 1T Phase $MoS_2$ Nanosheets. Nano Lett. 16, 572-576 (2016).   DOI
55 Chen, C. L. et al. A Spiking Neuron Circuit Based on a Carbon Nanotube Transistor. Nanotechnology 23, 275202-275207 (2012).   DOI
56 Yu, F. et al. Chitosan-Based Polysaccharide Gated Flexible Indium-Tin-Oxide Synaptic Transistor with Learning Abilities. ACS Appl. Mater. Interfaces 10, 16881-16886 (2018).   DOI
57 Zhou, J., Liu, Y., Shi, Y. & Wan, Q. Solution-Processed Chitosan-Gated IZO-Based Transistors for Mimicking Synaptic Plasticity. IEEE Electron Device Lett. 35, 280-282 (2014).   DOI
58 Yang, C. S. et al. A Synaptic Transistor Based on Quasi-2D Molybdenum Oxide. Adv. Mater. 29, 1700906 (2017).   DOI
59 Zhou, J., Wan, C., Zhu, L., Shi, Y. & Wan, Q. Synaptic Behaviors Mimicked in Flexible Oxide-Based Transistors on Plastic Substrates. IEEE Electron Device Lett. 34, 1433-1435 (2013).   DOI
60 Wu, G., Zhang, J., Wan, X., Yang, Y. & Jiang, S. Chitosan-Based Biopolysaccharide Proton Conductors for Synaptic Transistors on Paper Substrates. J. Mater. Chem. C 2, 6249-6255 (2014).
61 Liu, R. et al. Biodegradable Oxide Synaptic Transistors Gated by a Biopolymer Electrolyte. J. Mater. Chem. C 4, 7744-7750 (2016).   DOI
62 Liu, Y. H., Zhu, L. Q., Feng, P., Shi, Y. & Wan, Q. Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes. Adv. Mater. 27, 5599-5604 (2015).   DOI
63 Lu, A., Sun, J., Jiang, J. & Wan, Q. One-Shadow-Mask Self-Assembled Ultralow-Voltage Coplanar Homojunction Thin-Film Transistors. IEEE Electron Device Lett. 31, 1137-1139 (2010).   DOI
64 Wan, C. J., Zhu, L. Q., Zhou, J. M., Shi, Y. & Wan, Q. Memory and Learning Behaviors Mimicked in Nanogranular $SiO_2$-Based Proton Conductor Gated Oxide-Based Synaptic Transistors. Nanoscale 5, 10194 (2013).   DOI
65 Zhu, L. Q. et al. Multi-Gate Synergic Modulation in Laterally Coupled Synaptic Transistors. Appl. Phys. Lett. 107, 143502 (2015).   DOI
66 Zhu, L. Q. et al. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane. ACS Appl. Mater. Interfaces 8, 21770-21775 (2016).   DOI
67 Park, J. et al. Compact Neuromorphic System with Four-Terminal Si-Based Synaptic Devices for Spiking Neural Networks. IEEE Trans. Electron Devices 64, 2438-2444 (2017).   DOI
68 Kong, L.-an et al. Ion-Gel Gated Field-Effect Transistors with Solution-Processed Oxide Semiconductors for Bioinspired Artificial Synapses. Org. Electron. 39, 64-70 (2016).   DOI
69 Guo, L., Wen, J., Cheng, G., Yuan, N. & Ding, J. Synaptic Behaviors Mimicked in Indium-Zinc-Oxide Transistors Gated by High-Proton-Conducting Graphene Oxide-Based Composite Solid Electrolytes. J. Mater. Chem. C 4, 9762-9770 (2016).   DOI
70 Wang, J., Li, Y., Yang, Y. & Ren, T. L. Top-Gate Electric-Double-Layer IZO-Based Synaptic Transistors for Neuron Networks. IEEE Electron Device Lett. 38, 588-591 (2017).   DOI
71 Ziegler, M. & Kohlstedt, H. Mimic Synaptic Behavior with a Single Floating Gate Transistor: A MemFlash Synapse. J. Appl. Phys. 114, 194506 (2013).   DOI
72 Kim, H. et al. Silicon-Based Floating-Body Synaptic Transistor with Frequency-Dependent Short-and Long-Term Memories. IEEE Electron Device Lett. 37, 249-252 (2016).   DOI
73 Park, J., Kwon, M.-W., Kim, H. & Park, B.-G. Neuromorphic System Based on CMOS Inverters and Si-Based Synaptic Device. J. Nanosci. Nanotechnol. 16, 4709-4712 (2016).   DOI
74 Liu, M. et al. Artificial Neuron Synapse Transistor Based on Silicon Nanomembrane on Plastic Substrate. J. Semicond. 38, 064006 (2017).   DOI
75 Gkoupidenis, P., Schaefer, N., Garlan, B. & Malliaras, G. G. Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. Adv. Mater. 27, 7176-7180 (2015).   DOI
76 Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic Core-Sheath Nanowire Artificial Synapses with Femtojoule Energy Consumption. Sci. Adv. 2, 1501326 (2016).   DOI
77 Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A. & Malliaras, G. G. Synaptic Plasticity Functions in an Organic Electrochemical Transistor. Appl. Phys. Lett. 107, 263302 (2015).   DOI
78 Keene, S. T. et al. Optimized Pulse Write Schemes Improve Linearity and Write Speed for Low-Power Organic Neuromorphic Devices. J. Phys. D: Appl. Phys. 51, 224002 (2018).   DOI