• Title/Summary/Keyword: Multi-decoder

Search Result 188, Processing Time 0.03 seconds

A 3-stage Pipelined Architecture for Multi-View Images Decoder3 (단계 파이프라인 구조를 갖는 Multi-View 영상 디코더)

  • Bae, Chang-Ho;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.104-111
    • /
    • 2002
  • In this paper, we proposed the architecture of the decoder which implements the multi-view images decoding algorithm. The study of the hardware structure of the multi-view image processing has not been accomplished. The proposed multi-view images decoder operates in a three stage pipelined manner and extracts the depth of the pixels of the decoded image every clock. The multi-view images decoder consists of three modules, Node selector which transfers the value of the nodes repeatedly and Depth Extractor which extracts the depth of each pixel from the four values of the nodes and Affine transformer which generates the projecting position on the image plane from the values of the pixels and the specified viewpoint. The proposed architecture is designed and simulated by the Max+plus II design tool and the operating frequency is 30MHz. The image can be constructed in a real time by the decoder with the proposed architecture.

A Low Complexity Multi-level Sphere Decoder for MIMO Systems with QAM signals

  • Pham, Van-Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.890-893
    • /
    • 2008
  • In this paper, we present a low complexity modified multi-level sphere decoder (SD) for multiple-input multiple-output (MIMO) systems employing quadrature amplitude modulation (QAM) signals. The proposed decoder, exploiting the multi-level structure of the QAM signal scheme, first decomposes the high-level constellation into low-level 4-QAM constellations, so-called sub-constellations. Then, it deploys SD in the sub-constellations in parallel. In addition, in the searching stage, it uses the optimal low-complexity sort method. Computer simulation results show that the proposed decoder can provide near optimal maximum-likelihood (ML) performance while it significantly reduces the computational load.

  • PDF

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

Implementation of SDR-based LTE-A PDSCH Decoder for Supporting Multi-Antenna Using Multi-Core DSP (멀티코어 DSP를 이용한 다중 안테나를 지원하는 SDR 기반 LTE-A PDSCH 디코더 구현)

  • Na, Yong;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.85-92
    • /
    • 2019
  • This paper presents a SDR-based Long Term Evolution Advanced (LTE-A) Physical Downlink Shared Channel (PDSCH) decoder using a multicore Digital Signal Processor (DSP). For decoder implementation, multicore DSP TMS320C6670 is used, which provides various hardware accelerators such as turbo decoder, fast Fourier transformer and Bit Rate Coprocessors. The TMS320C6670 is a DSP specialized in implementing base station platforms and is not an optimized platform for implementing mobile terminal platform. Accordingly, in this paper, the hardware accelerator was changed to the terminal implementation to implement the LTE-A PDSCH decoder supporting the multi-antenna and the functions not provided by the hardware accelerator were implemented through core programming. Also pipeline using multicore was implemented to meet the transmission time interval. To confirm the feasibility of the proposed implementation, we verified the real-time decoding capability of the PDSCH decoder implemented using the LTE-A Reference Measurement Channel (RMC) waveform about transmission mode 2 and 3.

A study on the Cost-effective Architecture Design of High-speed Soft-decision Viterbi Decoder for Multi-band OFDM Systems (Multi-band OFDM 시스템용 고속 연판정 비터비 디코더의 효율적인 하드웨어 구조 설계에 관한 연구)

  • Lee, Seong-Joo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.90-97
    • /
    • 2006
  • In this paper, we present a cost-effective architecture of high-speed soft-decision Viterbi decoder for Multi-band OFDM(MB-OFDM) systems. In the design of modem for MB-OFDM systems, a parallel processing architecture is general]y used for the reliable hardware implementation, because the systems should support a very high-speed data rate of at most 480Mbps. A Viterbi decoder also should be designed by using a parallel processing structure and support a very high-speed data rate. Therefore, we present a optimized hardware architecture for 4-way parallel processing Viterbi decoder in this paper. In order to optimize the hardware of Viterbi decoder, we compare and analyze various ACS architectures and find the optimal one among them with respect to hardware complexity and operating frequency The Viterbi decoder with a optimal hardware architecture is designed and verified by using Verilog HDL, and synthesized into gate-level circuits with TSMC 0.13um library. In the synthesis results, we find that the Viterbi decoder contains about 280K gates and works properly at the speed required in MB-OFDM systems.

Low-Complexity Triple-Error-Correcting Parallel BCH Decoder

  • Yeon, Jaewoong;Yang, Seung-Jun;Kim, Cheolho;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.465-472
    • /
    • 2013
  • This paper presents a low-complexity triple-error-correcting parallel Bose-Chaudhuri-Hocquenghem (BCH) decoder architecture and its efficient design techniques. A novel modified step-by-step (m-SBS) decoding algorithm, which significantly reduces computational complexity, is proposed for the parallel BCH decoder. In addition, a determinant calculator and a error locator are proposed to reduce hardware complexity. Specifically, a sharing syndrome factor calculator and a self-error detection scheme are proposed. The multi-channel multi-parallel BCH decoder using the proposed m-SBS algorithm and design techniques have considerably less hardware complexity and latency than those using a conventional algorithms. For a 16-channel 4-parallel (1020, 990) BCH decoder over GF($2^{12}$), the proposed design can lead to a reduction in complexity of at least 23 % compared to conventional architecttures.

New Encoder/Decoder with Wavelength/Time 2-D Codes for Optical CDMA Network (광 부호 분할 다중접속 네트워크를 위한 파장/시간 2차원 코드의 새로운 부호기/복호기)

  • Hwang, Hu-Mor
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1035-1040
    • /
    • 2009
  • We propose a new encoder/decoders based on an tune able wavelength converter(TWC) and an arrayed waveguide grating(AWG) router for large capacity optical CDMA networks. The proposed encoder/decoder treats codewords of wavelength/time 2-D code simultaneously using the dynamic code allocation property of the TWC and the cyclic property of the AWG router, and multiple subscribers can share the encoder/decoder in networks. Feasibility of the structure of the proposed encoder/decoder for dynamic code allocation is tested through simulations using two wavelength/time 2-D codes, which are the generalized multi-wavelength prime code(GMWPC) and the generalized multi-wavelength Reed-Solomon code(GMWRSC). Test results show that the proposed encoder/decoder can increase the channel efficiency not only by increasing the number of simultaneous users without any multiple-access interference but by using a relatively short length CDMA codes.

A Programmable Multi-Format Video Decoder (프로그래머블 멀티 포맷 비디오 디코더)

  • Kim, Jaehyun;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.963-966
    • /
    • 2015
  • This paper introduces a programmable multi-format video decoder(MFD) to support HEVC(High Efficiency Video Coding) standard and for other video coding standards. The goal of the proposed MFD is the high-end FHD(Full High Definition) video decoder needed for a DTV(Digital Tele-Vision) SoC(System on Chip). The proposed platform consists of a hybrid architecture that is comprised of reconfigurable processors and flexible hardware accelerators to support the massive computational load and various kinds of video coding standards. The experimental results show that the proposed architecture is operating at a 300MHz clock that is capable of decoding HEVC bit-stream of FHD 30 frames per second.

Low-Complexity and High-Speed Multi-Size Circular Shifter With Benes Network Control Signal Optimization for WiMAX QC-LDPC Decoder (Benes 네트워크 제어 신호 최적화를 이용한 WiMAX QC-LDPC 복호기용 저면적/고속 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2367-2372
    • /
    • 2015
  • One of various low-density parity-check(LDPC) codes that has been adopted in many communication standards due to its error correction ability is a quasi-cyclic LDPC(QC-LDPC) code, which leads to comparable decoder complexity. One of the main blocks in the QC-LCDC code decoder is a multi-size circular shifter(MSCS) that can perform various size rotation. The MSCS can be implemented with many structures, one of which is based on Banes network. The Benes network structure can perform the normal MSCS operation efficiently, but it cannot use the properties coming from specifications like rotation sizes. This paper proposesd a scheme where the Benes network structure can use the rotation size property with the modification of the control signal generation. The proposed scheme is applied to the MSCS of IEEE 802.16e WiMAX QC-LDPC decoder to reduce the number of MUXes and the critical path delay.

Low-Complexity Multi-Size Circular Shifter for QC-LDPC Decoder Based on Two Serial Barrel-Rotators (두 개의 직렬 Barrel-Rotator를 이용한 QC-LDPC 복호기용 저면적 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1839-1844
    • /
    • 2015
  • The low-density parity-check(LDPC) code has been adopted in many communication standards due to its error correcting performance, and the quasi-cyclic LDPC(QC-LDPC) is widely used because of implementation easiness. In the QC-LDPC decoder, a cyclic-shifter is required to rotate data in various sizes. This kind of cyclic-shifters are called multi-size circular shifter(MSCS), and this paper proposes a low-complexity structure for MSCS. In the conventional serially-placed two barrel-rotators, the unnecessary multiplexers are revealed and removed, leading to low-complexity. The experimental results show that the area is reduced by about 12%.