• Title/Summary/Keyword: Multi-clock FFT

Search Result 7, Processing Time 0.026 seconds

Low-Power-Adaptive MC-CDMA Receiver Architecture

  • Hasan, Mohd.;Arslan, Tughrul;Thompson, John S.
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.79-88
    • /
    • 2007
  • This paper proposes a novel concept of adjusting the hardware size in a multi-carrier code division multiple access (MC-CDMA) receiver in real time as per the channel parameters such as delay spread, signal-to-noise ratio, transmission rate, and Doppler frequency. The fast Fourier transform (FFT) or inverse FFT (IFFT) size in orthogonal frequency division multiplexing (OFDM)/MC-CDMA transceivers varies from 1024 points to 16 points. Two low-power reconfigurable radix-4 256-point FFT processor architectures are proposed that can also be dynamically configured as 64-point and 16-point as per the channel parameters to prove the concept. By tailoring the clock of the higher FFT stages for longer FFTs and switching to shorter FFTs from longer FFTs, significant power saving is achieved. In addition, two 256 sub-carrier MC-CDMA receiver architectures are proposed which can also be configured for 64 sub-carriers in real time to prove the feasibility of the concept over the whole receiver.

  • PDF

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

Hardware Implementation of Arc Detection Using FFT (FFT를 이용한 아크 감지 하드웨어 구현)

  • Sun Hee Kim;Yeon Ho Kang;Jeon Ho Kim;Jae Won Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.39-45
    • /
    • 2024
  • The installation of arc circuit breakers is being strengthened to prevent accidents such as electric shock and fire caused by Arc. Among arcs, serial arcs are difficult to detect with general arc detectors because there is not much change in load current when an arc occurs. Therefore, in this paper, unlike the existing Arc Fault Circuit Interrupters method, arc detection hardware is implemented using the FFT algorithm. FFT is suitable for serial arc identification because it can efficiently analyze high-frequency signals generated outside of normal AC signals. This study explains ARC detection circuits and the 2048-FFT based on radix-2 and radix-4, and presents hardware implementation results using FPGA. The implemented system detects the arc up to the frequency range of 122,880 Hz. Through simulation and FPGA board testing, it was confirmed that ARC was detected.

  • PDF

A 8192-point pipelined FFT/IFFT processor using two-step convergent block floating-point scaling technique (2단계 수렴 블록 부동점 스케일링 기법을 이용한 8192점 파이프라인 FFT/IFFT 프로세서)

  • 이승기;양대성;신경욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.963-972
    • /
    • 2002
  • An 8192-point pipelined FFT/IFFT processor core is designed, which can be used in multi-carrier modulation systems such as DUf-based VDSL modem and OFDM-based DVB system. In order to improve the signal-to-quantization-noise ratio (SQNR) of FFT/IFFT results, two-step convergent block floating-point (TS_CBFP) scaling is employed. Since the proposed TS_CBFP scaling does not require additional buffer memory, it reduces memory as much as about 80% when compared with conventional CBFP methods, resulting in area-and power-efficient implementation. The SQNR of about 60-㏈ is achieved with 10-bit input, 14-bit internal data and twiddle factors, and 16-bit output. The core synthesized using 0.25-$\mu\textrm{m}$ CMOS library has about 76,300 gates, 390K bits RAM, and twiddle factor ROM of 39K bits. Simulation results show that it can safely operate up to 50-㎒ clock frequency at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-${\mu}\textrm{s}$. It was verified by Xilinx FPGA implementation.

A Design of Memory-efficient 2k/8k FFT/IFFT Processor using R4SDF/R4SDC Hybrid Structure (R4SDF/R4SDC Hybrid 구조를 이용한 메모리 효율적인 2k/8k FFT/IFFT 프로세서 설계)

  • 신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.430-439
    • /
    • 2004
  • This paper describes a design of 8192/2048-point FFT/IFFT processor (CFFT8k2k), which performs multi-carrier modulation/demodulation in OFDM-based DVB-T receiver. Since a large size FFT requires a large buffer memory, two design techniques are considered to achieve memory-efficient implementation of 8192-point FFT/IFFT. A hybrid structure, which is composed of radix-4 single-path delay feedback (R4SDF) and radix-4 single-path delay commutator (R4SDC), reduces its memory by 20% compared to R4SDC structure. In addition, a memory reduction of about 24% is achieved by a novel two-step convergent block floating-point scaling. As a result, it requires only 57% of memory used in conventional design, reducing chip area and power consumption. The CFFT8k2k core is designed in Verilog-HDL, and has about 102,000 Bates, RAM of 292k bits, and ROM of 39k bits. Using gate-level netlist with SDF which is synthesized using a $0.25-{\um}m$ CMOS library, timing simulation show that it can safely operate with 50-MHz clock at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-${\mu}\textrm{s}$. The functionality of the core is fully verified by FPGA implementation, and the average SQNR of 60-㏈ is achieved.

A Design of Pipelined Analog-to-Digital Converter with Multi SHA Structure (Multi SHA 구조의 파이프라인 아날로그-디지털 변환기 설계)

  • Lee, Seung-Woo;Ra, Yoo-Chan;Shin, Hong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.114-121
    • /
    • 2005
  • In this paper, Pipelined A/D converter with multi SHA structure is proposed for high speed operation. The proposed structure incorporates a multi SHA block that consists of multiple SHAs of identical characteristics in parallel to improve the conversion speed. The designed multi SHA is operated by non-overlapping clocks and the sampling speed can be improved by increasing the number of multiplexed SHAs. Pipelined A/D converter, applying the proposed structure, is designed to satisfy requirement of analog front-end of VDSL modem. The measured INL and DNL of designed A/D converter are $0.52LSB{\sim}-0.50LSB\;and\;0.80LSB{\sim}-0.76LSB$, respectively. It satisfies the design specifications for VDSL modems. The simulated SNR is about 66dB which corresponds to a 10.7 bit resolution. The power consumption is 24.32mW.

A Design of ADC with Multi SHA Structure which for High Data Communication (고속 데이터 통신을 위한 다중Multi SHA구조를 갖는 ADC설계)

  • Kim, Sun-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1709-1716
    • /
    • 2007
  • In this paper, ADC with multi SHA structure is proposed for high speed operation. The proposed structure incorporates a multi SHA block that consists of multiple SHAs of identical characteristics in parallel to improve the conversion speed. The designed multi SHA is operated by non-overlapping clocks and the sampling speed can be improved by increasing the number of multiplexed SHAs. Pipelined A/D converter, applying the proposed structure, is designed to satisfy requirement of analog front-end of VDSL modem. The measured INL and DNL of designed A/D converter are $0.52LSB{\sim}-0.50LSB$ and $0.80LSB{\sim}-0.76LSB$, respectively. It satisfies the design specifications for VDSL modems. The simulated SNR is about 66dB which corresponds to a 10.7 bit resolution. The power consumption is 24.32mW.