• Title/Summary/Keyword: Multi-chip System

Search Result 245, Processing Time 0.027 seconds

A Prediction-Based Dynamic Thermal Management Technique for Multi-Core Systems (멀티코어시스템에서의 예측 기반 동적 온도 관리 기법)

  • Kim, Won-Jin;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • The power consumption of a high-end microprocessor increases very rapidly. High power consumption will lead to a rapid increase in the chip temperature as well. If the temperature reaches beyond a certain level, chip operation becomes either slow or unreliable. Therefore various approaches for Dynamic Thermal Management (DTM) have been proposed. In this paper, we propose a learning based temperature prediction scheme for a multi-core system. In this approach, from repeatedly executing an application, we learn the thermal patterns of the chip, and we control the temperature in advance through DTM. When the predicted temperature may go beyond a threshold value, we reduce the temperature by decreasing the operation frequencies of the corresponding core. We implement our temperature prediction on an Intel's Quad-Core system which has integrated digital thermal sensors. A Dynamic Frequency System (DFS) technique is implemented to have four frequency steps on a Linux kernel. We carried out experiments using Phoronix Test Suite benchmarks for Linux. The peak temperature has been reduced by on average $5^{\circ}C{\sim}7^{\circ}C$. The overall average temperature reduced from $72^{\circ}C$ to $65^{\circ}C$.

  • PDF

Design of a Dingle-chip Multiprocessor with On-chip Learning for Large Scale Neural Network Simulation (대규모 신경망 시뮬레이션을 위한 칩상 학습가능한 단일칩 다중 프로세서의 구현)

  • 김종문;송윤선;김명원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.149-158
    • /
    • 1996
  • In this paper we describe designing and implementing a digital neural chip and a parallel neural machine for simulating large scale neural netsorks. The chip is a single-chip multiprocessor which has four digiral neural processors (DNP-II) of the same architecture. Each DNP-II has program memory and data memory, and the chip operates in MIMD (multi-instruction, multi-data) parallel processor. The DNP-II has the instruction set tailored to neural computation. Which can be sed to effectively simulate various neural network models including on-chip learning. The DNP-II facilitates four-way data-driven communication supporting the extensibility of parallel systems. The parallel neural machine consists of a host computer, processor boards, a buffer board and an interface board. Each processor board consists of 8*8 array of DNP-II(equivalently 2*2 neural chips). Each processor board acn be built including linear array, 2-D mesh and 2-D torus. This flexibility supports efficiency of mapping from neural network models into parallel strucgure. The neural system accomplishes the performance of maximum 40 GCPS(giga connection per second) with 16 processor boards.

  • PDF

A Study on the Logic Design of Multi-Display Driver (멀티 디스플레이 구동 드라이버 로직 설계에 관한 연구)

  • Jin K.C.;Chun K.J.;Kim S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.212-215
    • /
    • 2005
  • The needs of larger screen in mobile device would be increased as the time of ubiquitous and convergence is coming. And, the type of mobile device has been evolved from bar, slide to row. Recently, the study on the multi-display screen which has seamless gap between two display panel has been published, and moreover the System On Chip(SOC) design strategy of core chip has been the most promising Field-Programmable Gate Array(FPGA) technology in the display system. Therefore, in this paper, we proposed the design technique of SOC and evaluated the effectiveness with Very high speed Hardware Description Language(VHDL) Intellectual Property (IP) for the operation of multi display device driver. Also, This IP design would be to allow any kind of user interface in control system.

  • PDF

Development of the Flip-Chip Bonder using multi-DOF Motion Stage and Vision System (다자유도 구동스테이지와 비전시스템을 이용한 플립칩 본더 개발)

  • 황달연;전승진;김기범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1717-1722
    • /
    • 2003
  • In this paper we developed flip-chip bonder using XY stage, liner-rotary actuator and vision system. We depicted the major parts of the developed flip-chip bonder. Then we discussed several problems and their solutions such as vision and motion control, pick-up module position accuracy, separation of chip from the blue taped hoop, etc. We used a post guide to improve the horizontal positional accuracy against the long arm. Also, we used an ejector module and synchronization technique for easy chip separation from the blue tape.

  • PDF

The development of Pick and place system for multi-sorting of CSP (CSP의 Multi-sorting을 위한 pick and place 시스템의 개발)

  • 김찬용;곽철훈;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.171-174
    • /
    • 1997
  • The great development of semiconductor industry demands the high efficiency and performance of related device, but the pick and place system of semiconductor packaging device can load a few units until nowdays. Although the system can load a lot of units, it can work multiple sort operation. The defect like that causes a low efficiency. Therefore, this paper represents the development of pick and place system which can work multiple sort operation.

  • PDF

A GaAs MMIC Multi-Function Chip with a Digital Serial-to-Parallel Converter for an X-band Active Phased Array Radar System (X-대역 능동 위상 배열 레이더 시스템용 디지털 직병렬 변환기를 포함한 GaAs MMIC 다기능 칩)

  • Jeong, Jin-Cheol;Shin, Dong-Hwan;Ju, In-Kwon;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.613-624
    • /
    • 2011
  • An MMIC multi-function chip for an X-band active phased array radar system has been designed and fabricated using a 0.5 ${\mu}m$ GaAs p-HEMT commercial process. A digital serial-to-parallel converter is included in this chip in order to reduce the number of the control interface. The multi-function chip provides several functions: 6-bit phase shifting, 6-bit attenuation, transmit/receive switching, and signal amplification. The fabricated multi-function chip with a relative compact size of 24 $mm^2$(6 mm${\times}$4 mm) exhibits a transmit/receive gain of 24/15 dB and a P1dB of 21 dBm from 8.5 GHz to 10.5 GHz. The RMS errors for the 64 states of the 6-bit phase shift and attenuation were measured to $7^{\circ}$ and 0.3 dB, respectively over the frequency.

Analysis of Multi-Core mobile system structure and nonlinear characteristic (Multi-Core Mobile 시스템구조와 비선형 특성 분석)

  • Kim, Wan-tae;Park, Bee-ho;Cho, Sung-joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.959-962
    • /
    • 2009
  • Recently, a multi-core system is studied for single terminal's operations on various service networks for mobile systems. Therefore, it is expected that mobile systems capable of supporting WCDMA, GSM, and WiBro would be developed. Mobile systems for supporting various service networks is able to be implemented on a single chipset via SoC(System on Chip) technology, thus a noble modem design proper for SoC technology is necessary. As those systems shall be operated at different frequency band with only a single terminal, a problem that a nonlinear characteristic according to the system and its frequency band is occurred. In this paper a noble modem design for multi-core systems is proposed and the nonlinear characteristics for those systems is analysed. The proposed modem design is based on OFDM(Orthogonal Frequency Division Multiplexing) and MC-CDMA scheme. And nonlinear characteristic analysis is done by PSD measurement.

  • PDF

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

A Low Power Multi-Function Digital Audio SoC

  • Lim, Chae-Duck;Lee, Kyo-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.399-402
    • /
    • 2004
  • This paper presents a system-on-chip prototype implementing a full integration for a portable digital audio system. The chip is composed of a audio processor block to implements audio decoding and voice compression or decompression software, a system control block including 8-bit MCU core and Memory Management Unit (MMU) a low power 16-bit ${\Sigma}{\Delta}$ CODEC, two DC-to-BC converter, and a flash memory controller. In order to support other audio algorithms except Mask ROM type's fixed codes, a novel 16-bit fixed-point DSP core with the program-download architecture is proposed. Funker, an efficient power management technique such as task-based clock management is implemented to reduce power consumption for portable application. The proposed chip has been fabricated with a 4 metal 0.25um CMOS technology and the chip area is about 7.1 mm ${\times}$ 7.1mm with 100mW power dissipation at 2.5V power supply.

  • PDF

A Study on the 0.5$\mu\textrm{m}$ Dual Gate High Voltage Process for Multi Operation Applications (Multi Operation을 위한 0.5$\mu\textrm{m}$Dual Gate 고전압 공정에 관한 연구)

  • 송한정;김진수;곽계달
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.463-466
    • /
    • 2000
  • According to the development of the semiconductor micro device technology, IC chip trends the high integrated, low power tendency. Nowadays, it can be showed the tendency of single chip in system level. But in the system level, IC operates by multi power supply voltages. So, semiconductor process is necessary for these multi power operation. Therefore, in this paper, dual gate high voltage device that operate by multi power supply of 5V and 20V fabricated in the 0.5${\mu}{\textrm}{m}$ CMOS process technology and its electrical characteristics were analyzed. The result showed that the characteristics of the 5V device almost met with the SPICE simulation, the SPICE parameters are the same as the single 5V device process. And the characteristics of 20V device showed that gate length 3um device was available without degradation. Its current was 520uA/um, 350uA/um for NMOS, PMOS and the breakdown voltages were 25V, 28V.

  • PDF