Abstract
The power consumption of a high-end microprocessor increases very rapidly. High power consumption will lead to a rapid increase in the chip temperature as well. If the temperature reaches beyond a certain level, chip operation becomes either slow or unreliable. Therefore various approaches for Dynamic Thermal Management (DTM) have been proposed. In this paper, we propose a learning based temperature prediction scheme for a multi-core system. In this approach, from repeatedly executing an application, we learn the thermal patterns of the chip, and we control the temperature in advance through DTM. When the predicted temperature may go beyond a threshold value, we reduce the temperature by decreasing the operation frequencies of the corresponding core. We implement our temperature prediction on an Intel's Quad-Core system which has integrated digital thermal sensors. A Dynamic Frequency System (DFS) technique is implemented to have four frequency steps on a Linux kernel. We carried out experiments using Phoronix Test Suite benchmarks for Linux. The peak temperature has been reduced by on average $5^{\circ}C{\sim}7^{\circ}C$. The overall average temperature reduced from $72^{\circ}C$ to $65^{\circ}C$.