• 제목/요약/키워드: Multi-Electrode

검색결과 413건 처리시간 0.025초

연속 파장 가변시 현상론적인 비선형 이득포화효과가 다전극 DBR 레이저의 잡음특성에 미치는 영향 (Phenomenological Nonlinear Gain Saturation Effect on the Noise Characteristics of a Multi-electrode DBR Laser with Continuous Frequency Tuning)

  • 이석목;최원준;한일기;김회종;우덕하;김선호;이정일;감광남;박홍이
    • 한국광학회지
    • /
    • 제6권2호
    • /
    • pp.135-141
    • /
    • 1995
  • 현상론적인 비선형 이득 포화 효과가 연속 파장 가변시 다전극 DBR 레이저의 잡음 특성에 미치는 영향을 이론적으로 연구하였다. 광전송선 모델에 종 방향으로의 자발적 방출 분포에 의한 향상계수 K와 비선형 이득 포화 효과를 고려하여 연속 파장 가변시 출력의 감소에 따른 상대적 세기 잡음과 주파수 잡음 특성을 분석하였다. 수동부분의 주입전류의 증가에 따라 자발적 방출률은 증가하며, 이에 비례하여 상대적 세기 잡음, 주파수 잡음 및 선폭은 증가한다. 현상론적인 비선형 이득 포화 효과는 상대적 세기 잡음 및 주파수 잡음 특성에 큰 영향을 주지만 선폭은 오히려 감소한다.

  • PDF

Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

  • Liu, Wei;Wu, Liang;Zhang, Xiaohua;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.204-210
    • /
    • 2014
  • The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 ${\mu}M$, 0.7-440 ${\mu}M$ and 3.0-365 ${\mu}M$, respectively, and the detection limits (S/N = 3) are $0.03{\mu}M$, $0.11{\mu}M$ and $0.38{\mu}M$, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

다수전극형 전자종이 필름에서 인가전압에 따른 단일 컬러 가변에 관한 연구 (A Study on Variation of Single Color by Applied Voltage in Multi-Electrode Type Electronic Film)

  • 이상일;홍연찬;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.490-495
    • /
    • 2018
  • A multielectrode electronic paper film capable of expressing a single-color image was fabricated by injecting color electronic ink into an electronic paper panel; on the basis of its reflective or transparent properties, it is possible to control the expression of six single-color images and their transmittance. In this study, a single-color image was represented by driving a multielectrode electronic paper film; color coordinates were measured. The six capable single colors were yellowish pink (0.444, 0.354), white (0.355, 0.352), black (0.241, 0.241), orange (0.514, 0.360), reddish orange (0.606, 0.338), and reddish purple (0.469, 0.145). Color particles used in this paper were black and white, by which six colors are accomplished, but more single-color images can be combined by using cyan, magenta, and yellow particles.

전극의 임피던스 감소를 위해 백금 도금한 ITO 신경신호 검출용 다중 전극 제작 (The fabrication of Pt electroplating on ITO multi-electrode array in neuronal signal detection)

  • 권광민;최준호;이경진;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.257-259
    • /
    • 2002
  • In investigating the characteristics of a neural network, the use of planar microelectrode array shows several advantages over normal intracellular recording[1]. A transparent indium tin oxide(ITO) multi-electrode array(MEA) was fabricated and its top surface was insulated with photodefinable polyimide(HD-8001) except the exposed area for interfacing between the ITO electrodes and the neuronal cells. The exposed ITO electrodes were platinized in order to reduce the impedance between the electrodes and electrolyte. The one-minute platinization with $0.99nA/{\mu}m^2$ current density reduced the average impedance of the electrodes from $2.5M\Omega\;to\;90k\Omega$ at 1kHz in normal ringer solution. Cardiac cells were cultured on this MEA as a pilot study before neuron culture. The signals detected by the platinized electrodes had larger amplitudes and improved signal to noise ratio(SNR) compared to non-platinized electrodes. It is clear that microelectrodes need to have lower impedance to make reliable extracellular recordings, and thus platinization is essential part of MEA fabrication. Burst spike of cultured olfactory bulb was also detected with the MEA having platinized electrodes.

  • PDF

Recent Advances on Multi-Dimensional Nanocarbons for Superapacitors: A Review

  • Bae, Joonho
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.251-259
    • /
    • 2018
  • In general, the charge storage characteristics and overall performance of electrochemical energy devices (such as lithiumion batteries and supercapacitors) significantly depends on the structural and geometrical factors of the electrodes' active materials. The most widely used active materials of electrochemical energy storage devices are based on carbons of various forms. Each carbon type has drawbacks and advantages when used as the electrode material. Studies have been recently carried out to combine different types of carbons, in particular nanostructured carbons, in order to overcome the structure-originated limitations and thus enhance the overall electrochemical performances. In this feature article, we report the recent progress on the development of this novel class of materials (multidimensional nanocarbons), and their applications for supercapacitors. Multidimensional nanocarbons include graphenes/carbon nanotubes (CNTs), CNTs/carbon films, CNTs/fullerenes, and ternary carbon nanostructures. Various applications using these multidimensional nanocarbons have been proposed and demonstrated in the literature. Owing to the recent extensive studies on electrochemical energy storage devices and considering that carbons are their most fundamental electrode materials, the number of reports on nanocarbons employed as electrodes of the electrochemical energy storage devices is rapidly increasing. Recently, numerous multidimensional nanocarbons have been designed, prepared, and utilized as electrodes of electrochemical capacitors or supercapacitors, which are considered next-generation energy devices owing to their unique merits compared to the conventional structures. In this review, we summarize the basic motivations, preparation methods, and resultant supercapacitor performances of each class of multidimensional nanocarbons published in the literature, focusing on recent reports.

적층 PTC 써미스터의 전기적 특성에 대한 재산화의 영향 (Effect of Re-oxidation on the Electrical Properties of Mutilayered PTC Thermistors)

  • 전명표
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.98-103
    • /
    • 2013
  • The alumina substrates that Ni electrode was printed on and the multi-layered PTCR thermistors of which composition is $(Ba_{0.998}Ce_{0.002})TiO_3+0.001MnCO_3+0.05BN$ were fabricated by a thick film process, and the effect of re-oxidation temperature on their resistivities and resistance jumps were investigated, respectively. Ni electroded alumina substrate and the multi-layered PTC thermistor were sintered at $1150^{\circ}C$ for 2 h under $PO_2=10^{-6}$ Pa and then re-oxidized at $600{\sim}850^{\circ}C$ for 20 min. With increasing the re-oxidation temperature, the room temperature resistivity increased and the resistance jump ($LogR_{290}/R_{25}$) decreased, which seems to be related to the oxidation of Ni electrode. The small sized chip PTC thermistor such as 2012 and 3216 exhibits a nonlinear and rectifying behavior in I-V curve but the large sized chip PTC thermistor such as 4532 and 6532 shows a linear and ohmic behavior. Also, the small sized chip PTC thermistor such as 2012 and 3216 is more dependent on the re-oxidation temperature and easy to be oxidized in comparison with the large sized chip PTC thermistor such as 4532 and 6532. So, the re-oxidation conditions of chip PTC thermistor may be determined by considering the chip size.

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

탄소나노섬유 및 RuO2가 폴리아닐린의 초고용량 캐폐시턴스 특성에 미치는 효과 (Electrochemical Properties of Polyaniline with Carbon Nanotube and RuO2 as Supercapacitor Electrodes)

  • 윤여일;고장면
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.898-902
    • /
    • 2008
  • Polyaniline(PAN), multi-walled carbon nanotube(CNT)/PAN, $CNT/PAN/RuO_2$로 구성된 초고용량캐폐시터 전극을 제조하여 cyclic voltammetry(CV)를 이용하여 1 M $H_2SO_4$ 수용액에서 캐패시턴스 특성을 조사하였다. PAN, CNT/PAN 그리고 $CNT/PAN/RuO_2$ 복합전극은 높은 주사속도인 1,000 mV/s에서 199, 304, 392 F/g의 비용량을 각각 나타내었다. 수명시험 결과, $CNT/PAN/RuO_2$, CNT/PAN, PAN 전극은 10,000 번의 싸이클에서 각각 61, 66 그리고 51%의 초기용량을 유지하였다. PAN 전극은 CNT와 복합화하여 축전용량 및 수명특성을 향상시킬 수 있으며, $RuO_2$ 도입은 축전용량 향상에는 기여하나 수명 증가 효과는 미미하였다.

리튬이온 배터리용 다층박판 금속의 초음파 용착시 용착강도 (Welding Strength in the Ultrasonic Welding of Multi-layer Metal Sheets for Lithium-Ion Batteries)

  • 김진범;서지원;박동삼
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.100-107
    • /
    • 2021
  • As a significant technology in the smartization era promoted by the Fourth Industrial Revolution, the secondary battery industry has recently attracted significant attention. The demand for lithium-ion batteries (LIBs), which exhibit excellent performance, is considerably increasing in different industrial fields. During the manufacturing process of LIBs, it is necessary to join the cathode and anode sheets with thicknesses of several tens of micrometers to lead taps of the cathode and anode with thicknesses of several hundreds of micrometers. Ultrasonic welding exhibits excellent bonding when bonded with very thin plates, such as negative and positive electrodes of LIBs, and dissimilar and highly conductive materials. In addition, ultrasonic welding has a small heat-affected zone. In LIBs, Cu is mainly used as the negative electrode sheet, whereas Cu or Ni is used as the negative electrode tab. In this study, one or two electrode sheets (t0.025 mm Cu) were welded to one lead tab (t0.1 mm Cu). The welding energy and pressure were used as welding parameters to determine the welding strength of the interface between two or three welded materials. Finally, the effects of these welding parameters on the welding strength were investigated.