Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.4.251

Recent Advances on Multi-Dimensional Nanocarbons for Superapacitors: A Review  

Bae, Joonho (Department of Nano-physics, Gachon University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.4, 2018 , pp. 251-259 More about this Journal
Abstract
In general, the charge storage characteristics and overall performance of electrochemical energy devices (such as lithiumion batteries and supercapacitors) significantly depends on the structural and geometrical factors of the electrodes' active materials. The most widely used active materials of electrochemical energy storage devices are based on carbons of various forms. Each carbon type has drawbacks and advantages when used as the electrode material. Studies have been recently carried out to combine different types of carbons, in particular nanostructured carbons, in order to overcome the structure-originated limitations and thus enhance the overall electrochemical performances. In this feature article, we report the recent progress on the development of this novel class of materials (multidimensional nanocarbons), and their applications for supercapacitors. Multidimensional nanocarbons include graphenes/carbon nanotubes (CNTs), CNTs/carbon films, CNTs/fullerenes, and ternary carbon nanostructures. Various applications using these multidimensional nanocarbons have been proposed and demonstrated in the literature. Owing to the recent extensive studies on electrochemical energy storage devices and considering that carbons are their most fundamental electrode materials, the number of reports on nanocarbons employed as electrodes of the electrochemical energy storage devices is rapidly increasing. Recently, numerous multidimensional nanocarbons have been designed, prepared, and utilized as electrodes of electrochemical capacitors or supercapacitors, which are considered next-generation energy devices owing to their unique merits compared to the conventional structures. In this review, we summarize the basic motivations, preparation methods, and resultant supercapacitor performances of each class of multidimensional nanocarbons published in the literature, focusing on recent reports.
Keywords
Multi-dimensional; Nanocarbons; Graphenes; Carbon nanotubes; Fullerenes; Supercapacitors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Yu and L. Dai, J. Phys. Chem. Lett. 2009, 1(2), 467-470.   DOI
2 J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen and X. W. D. Lou, Energy Environ. Sci. 2014, 7(11), 3709-3719.   DOI
3 L. Yu, J. S. Park, Y.-S. Lim, C. S. Lee, K. Shin, H. J. Moon, C.-M. Yang, Y. S. Lee and J. H. Han, Nanotechnology, 2013, 24 (15), 155604.   DOI
4 D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff and S. O. Kim, Adv. Mater. 2010, 22(11), 1247-1252.   DOI
5 Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi and J. Liu, Nano Lett. 2012, 12(8), 4206-4211.   DOI
6 B. Boskovic, V. Golovko, M. Cantoro, B. Kleinsorge, A. Chuang, C. Ducati, S. Hofmann, J. Robertson and B. Johnson, Carbon 2005, 43(13), 2643-2648.   DOI
7 O. Smiljanic, T. Dellero, A. Serventi, G. Lebrun, B. Stansfield, J. Dodelet, M. Trudeau and S. Desilets, Chem. Phys. Lett. 2001, 342(5-6), 503-509.   DOI
8 H. Tang, J. Chen, L. Nie, S. Yao and Y. Kuang, Electrochim. Acta 2006, 51(15), 3046-3051.   DOI
9 B. Kim, H. Chung and W. Kim, J. Phys. Chem. 2010, 114(35), 15223-15227.
10 X. Liu, K. H. Baronian and A. J. Downard, Carbon 2009, 47(2), 500-506.   DOI
11 D. Cai, M. Song and C. Xu, Adv. Mater. 2008, 20(9), 1706-1709.   DOI
12 N. E. Tran, S. G. Lambrakos and J. J. Lagowski, J. Mater. Eng. Perform. 2009, 18(1), 95-101.   DOI
13 Y. Zhang, L. Ren, S. Wang, A. Marathe, J. Chaudhuri and G. Li, J. Mater. Chem. 2011, 21(14), 5386-5391.   DOI
14 R. N. Goyal, S. P. Singh, S. Chatterjee and S. Bishnoi, Indian J. Chem. 2010, 49A(1), 26-33.
15 H. Zhu, W. Wu, H. Zhang, L. Fan and S. Yang, Electroanalysis 2009, 21(24), 2660-2666.   DOI
16 Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, Y. Tang, L. Zhang, D. Gao and F. Gao, Small 2015, 11(11), 1310-1319.   DOI
17 R. B. Rakhi, W. Chen, D. Cha and H. N. Alshareef, Adv. Energy Mater. 2012, 2(3), 381-389.   DOI
18 J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian and F. Wei, Carbon 2010, 48(6), 1731-1737.   DOI
19 R. Rakhi and H. N. Alshareef, J. Power Sources 2011, 196(20), 8858-8865.   DOI
20 T. Cheng, B. Yu, L. Cao, H. Tan, X. Li, X. Zheng, W. Li, Z. Ren and J. Bai, J. Colloid Interface Sci. 2017, 501, 1-10.   DOI
21 R. Rakhi and M. Lekshmi, Electrochim. Acta, 2017, 231, 539-548.   DOI
22 F. Zhang, X. Yang, Y. Xie, N. Yi, Y. Huang and Y. Chen, Carbon, 2015, 82, 161-167.   DOI
23 T. Gan, C. Hu, Z. Sun and S. Hu, Electrochim. Acta 2013, 111, 738-745.   DOI
24 M. Li, J. Cheng, J. Wang, F. Liu and X. Zhang, Electrochim. Acta 2016, 206, 108-115.   DOI
25 V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, Nano Lett. 2009, 9(5), 1949-1955.   DOI
26 H. Jiang, P. S. Lee and C. Li, Energy Environ. Sci. 2013, 6(1), 41-53.   DOI
27 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature 1985, 318, 162.   DOI
28 J. Suntivich, H. A. Gasteiger, N. Yabuuchi and Y. Shao-Horn, J. Electrochem.l Soc. 2010, 157(8), B1263-B1268.   DOI
29 X. Wang, X. Han, M. Lim, N. Singh, C. L. Gan, M. Jan and P. S. Lee, J. Phys. Chem. C 2012, 116(23), 12448-12454.   DOI
30 A. K. Singh, D. Sarkar, K. Karmakar, K. Mandal and G. G. Khan, ACS Appl. Mater. Interfaces 2016, 8(32), 20786-20792.   DOI
31 C. Lamiel and J.-J. Shim, New J. Chem. 2016, 40(5), 4810-4817.   DOI
32 M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett. 2008, 8(10), 3498-3502.   DOI
33 J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang and F. Wei, Carbon 2010, 48(13), 3825-3833.   DOI
34 V. Subramanian, H. Zhu and B. Wei, J. Power Sources 2006, 159(1), 361-364.   DOI
35 Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, Adv. Mater. 2010, 22(33), 3723-3728.   DOI
36 L. L. Zhang, R. Zhou and X. S. Zhao, J. Mater. Chem. 2010, 20(29), 5983-5992.   DOI
37 E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo and I. Honma, Nano Lett. 2008, 8(8), 2277-2282.   DOI
38 M. Beidaghi and C. Wang, Adv. Func. Mater. 2012, 22(21), 4501-4510.   DOI
39 Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, Phys. Chem. Chem. Phys. 2011, 13(39), 17615-17624.   DOI
40 S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. M. Ma and C. C. Hu, J. Mater. Chem. 2011, 21(7), 2374-2380.   DOI
41 J. Zang, S.-J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, C. Q. Sun, J. Guo and K. Lian, J. Phys. Chem. C 2008, 112(38), 14843-14847.   DOI
42 Y. Wang, Y. P. Wu, Y. Huang, F. Zhang, X. Yang, Y. F. Ma and Y. S. Chen, J. Phys. Chem. C 2011, 115(46), 23192-23197.   DOI
43 P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li and S. H. Yu, Adv. Mater. 2013, 25(23), 3192-3196.   DOI
44 D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, T. H. Kim, B. Li, J. Chang and Y. H. Lee, ACS Nano 2015, 9(2), 2018-2027.   DOI
45 W. Fan, Y.-E. Miao, Y. Huang, W. W. Tjiu and T. Liu, RSC Adv. 2015, 5(12), 9228-9236.   DOI
46 Y. Liu, G. Yuan, Z. Jiang, Z. Yao and M. Yue, J. ALLOY. COMPD. 2015, 618, 37-43.   DOI