DOI QR코드

DOI QR Code

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young (Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Kwi-Jong (LCR Division, Samsung Electro-Mechanics) ;
  • Kang, Suk-Joong L. (Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2013.12.05
  • Accepted : 2013.12.18
  • Published : 2013.12.28

Abstract

During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Keywords

References

  1. H. Kishi, Y. Mizuno and H. Chazono: Jpn. J. Appl. Phys., 42 (2003) 1. https://doi.org/10.1143/JJAP.42.1
  2. C. A. Randall : J. Ceram. Soc. Jpn., 109 (2001) S2. https://doi.org/10.2109/jcersj.109.S2
  3. B. Y. Yu and W. C. J. Wei: J. Am. Ceram. Soc., 88 (2005) 2328. https://doi.org/10.1111/j.1551-2916.2005.00431.x
  4. A. V. Polotai, G. Y. Yang, E. C. Dickey and C. A. Randall: J. Am. Ceram. Soc., 90 (2007) 3811.
  5. Z. Yan, O. Guillon, S. Wang, C. L. Martin, C. S. Lee and D. Bouvard: Appl. Phys. Lett., 100 (2012)263107. https://doi.org/10.1063/1.4730625
  6. T. Cheng and R. Raj: J. Am. Ceram. Soc., 72 (1989) 1649. https://doi.org/10.1111/j.1151-2916.1989.tb06297.x
  7. R. Dannenberg, E. A. Stach, J. R. Groza and B. J. Dresser: Thin Solid Films, 370 (2000) 54. https://doi.org/10.1016/S0040-6090(99)00947-5
  8. J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano and T. Nomura: J. Power Sources, 60 (1996) 199. https://doi.org/10.1016/S0378-7753(96)80011-5
  9. M. M. Samantaray, A. Gurav, E. C. Dickey and C. A. Randall: J. Am. Ceram. Soc., 95 (2012) 257. https://doi.org/10.1111/j.1551-2916.2011.04769.x
  10. M. M. Samantaray, A. Gurav, E. C. Dickey and C. A. Randall: J. Am. Ceram. Soc., 95 (2012) 264. https://doi.org/10.1111/j.1551-2916.2011.04768.x
  11. A. V. Polotai, T. H. Jeong, G. Y. Yang, E. C. Dickey, C. A. Randall, P. Pinceloup and A. S. Gurav: J. Electroceram., 18 (2007) 261. https://doi.org/10.1007/s10832-007-9124-4
  12. M. M. Samantaray, K. Kaneda, W. Qu, E. C. Dickey and C. A. Randall: J. Am. Ceram. Soc., 95 (2012) 992.
  13. J. Y. Lee, J. H. Lee, S. H. Hong, Y. K. Lee and J. Y. Choi: Adv. Mater., 15 (2003) 1655. https://doi.org/10.1002/adma.200305418
  14. Y. Zhang, X. Wang, J. Y. Kim, J. R. Kim, K. H. Hur and L. Li: J. Am. Ceram. Soc., 96 (2013) 2163. https://doi.org/10.1111/jace.12228
  15. I. Yoshio: J. Am. Ceram. Soc., 41 (1958) 397. https://doi.org/10.1111/j.1151-2916.1958.tb13511.x
  16. S. H. Jung, D. Y. Yoon and S.-J. L. Kang: Acta Mater., 61 (2013) 5685. https://doi.org/10.1016/j.actamat.2013.06.010
  17. S.-J. L. Kang: Sintering : Densification, Grain Growth & Microstructure, Elsevier, Oxford (2005) 95.

Cited by

  1. Redesigning Multilayer Ceramic Capacitors by Preservation of Electrode Conductivity and Localized Doping vol.8, pp.45, 2016, https://doi.org/10.1021/acsami.6b11039