• Title/Summary/Keyword: Multi k Analysis

Search Result 6,080, Processing Time 0.03 seconds

Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

  • Kim, Sung-Hee;Hong, Suk-Yoon;Song, Jee-Hun;Kil, Hyun-Gwon;Jeon, Jae-Jin;Seo, Young-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-111
    • /
    • 2012
  • Hull Mounted Sonar (HMS) is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

Probabilistic analysis of seismically isolated elevated liquid storage tank using multi-phase friction bearing

  • Moeindarbari, Hesamaldin;Malekzadeh, Masoud;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.111-125
    • /
    • 2014
  • Multiple level performance of seismically isolated elevated storage tank isolated with multi-phase friction pendulum bearing is investigated under totally 60 records developed for multiple level seismic hazard analysis (SLE, DBE and MCE). Mathematical formulations involving complex time history analysis have been proposed for analysis of typical storage tank by multi-phase friction pendulum bearing. Multi-phase friction pendulum bearing represent a new generation of adaptive friction isolation system to control super-structure demand in different hazard levels. This isolator incorporates four concave surfaces and three independent pendulum mechanisms. Pendulum stages can be set to address specific response criteria for moderate, severe and very severe events. The advantages of a Triple Pendulum Bearing for seismic isolation of elevated storage tanks are explored. To study seismic performance of isolated elevated storage tank with multi-phase friction pendulum, analytical simulations were performed with different friction coefficients, pendulum radii and slider displacement capacities.

Simulation based Comparative Loss Analysis and Output Characteristic for 25MW Class of High Power Multi-level Inverters (25MW급 대용량 멀티레벨 인버터의 시뮬레이션 기반 손실해석과 출력특성 비교 분석)

  • Kim, I-Gim;Park, Chan-Bae;Baek, Jei-Hoon;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2015
  • The multi-level inverters are highly efficient for high-power and medium-voltage AC driving applications, such as high-speed railway systems and renewable energy resources, because such inverters generate lower total harmonic distortion (THD) and electromagnetic interface (EMI). Lower switching stress occurs on switching devices compared with conventional two-level inverters. Depending on the multi-level inverter topology, the required components and number of switching devices are different, influencing the overall efficiency. Comparative studies of multi-level inverters based on loss analysis and output characteristic are necessary to apply multi-level inverters in high-power AC conversion systems. This paper proposes a theoretical loss analysis method based on piecewise linearization of characteristic curves of power semiconductor devices as well as loss analysis and output performance comparison of five-level neutral-point clamped, flying capacitor inverters, and high-level cascaded H-bridge multi-level inverters.

Multi-physics Analysis for Temperature Rise Prediction of Power Transformer

  • Ahn, Hyun-Mo;Kim, Joong-Kyoung;Oh, Yeon-Ho;Song, Ki-Dong;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 2014
  • In this paper, a method for multi-physics analysis of the temperature-dependent properties of an oil-immersed transformer is discussed. To couple thermal fields with electromagnetic and fluid fields, an algorithm employing a user defined function (UDF) is proposed. Using electromagnetic analysis, electric power loss dependent on temperature rise is calculated; these are used as input data for multi-physics analysis in order to predict the temperature rise. A heat transfer coefficient is applied only at the outermost boundary between transformer and the atmosphere in order to reduce the analysis region. To verify the validity of the proposed method, the predicted temperature rises in high-voltage (HV) and low-voltage (LV) windings and radiators were compared with the experimental values.

Power Loss Analysis of Block Tomlinson-Harashima Precoder for Multi-user MIMO Systems (다중 사용자 다중 입출력 시스템을 위한 Block Tomlinson-Harashima 전처리 기법의 전력 손실 분석)

  • Kim, Joon-Doo;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.12-18
    • /
    • 2012
  • In this paper, we propose an improved analysis of transmission power of BTHP applied into the downlink multi-user (MU) multi-input multi-output (MIMO) system. On the contrary to the conventional analysis that adopts the strong interference assumption for every users in the system, the proposed analysis approximates the characteristics of the actual interference components so that provides more accurate approximation of the transmission power than that from the conventional analysis. By computer simulations, it is observed that the proposed approximation is more accurate than the conventional one, especially in the case of 4-QAM modulation.

Analysis and simulation of multi-mode piezoelectric energy harvesters

  • Zhang, Ying;Zhu, Binghu
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.549-563
    • /
    • 2012
  • Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.