Browse > Article
http://dx.doi.org/10.12989/sss.2012.9.6.549

Analysis and simulation of multi-mode piezoelectric energy harvesters  

Zhang, Ying (School of Electrical and Computer Engineering, Georgia Institute of Technology)
Zhu, Binghu (School of Electrical and Computer Engineering, Georgia Institute of Technology)
Publication Information
Smart Structures and Systems / v.9, no.6, 2012 , pp. 549-563 More about this Journal
Abstract
Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.
Keywords
multi-mode design; piezoelectric energy harvester; vibration; adaptive damper; phase shift;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Snyder, G.J., Lim J.R., Huang, C.K. and Fleurial, J.P. (2003), "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process", Nature Mater., 2(8), 528-531.   DOI   ScienceOn
2 Sodano, H. A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib., 36(3), 197-205.   DOI   ScienceOn
3 Sterken, T., Fiorini, P., Baert, K., Puers, T. and Borghs, G. (2003), "An electret-based electrostatic m-generator", Transducers, 3(2), 1291-1294.
4 Tiwari, R., Kim, K.J. and Kim, S. (2008), "Ionic polymer-metal composite as smart velocity sensors and energy harvesters", Smart Struct. Syst., 4(5), 549-563.   DOI
5 Venkatasubramanian, R., Silivola, E., Colpitts, T. and O'Quinn, B. (2001), "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, 413(6856), 597-602.   DOI   ScienceOn
6 Xu, C.N., Akiyama, M., Sun, P. and Watanabe, T. (1997), "Novel approach to electrochromism in $WO_3$ thin film using piezoelectric ceramics as power supply", Appl. Phys. Lett., 70(13), 1639-1640.   DOI   ScienceOn
7 Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P. and Feng, H. (2009), "Electromagnetic energy harvesting from vibrations of multiple frequencies", J. Micromech Microeng., 19(3), 035001.   DOI   ScienceOn
8 Yen, B.C. and Lang, J.H. (2006) "A variable-capacitance vibration-to-electric energy harvester", IEEE T. Circ. Syst. Vid., 53(2), 288-295.   DOI
9 Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J. (1995), "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Science, 270(5243), 1789-1791.   DOI   ScienceOn
10 Yu, G. and Heeger, A.J. (1995), "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions", J. Appl. Phys., 78(7), 4510-4515.   DOI   ScienceOn
11 Zhang, Y. and He, W. (2008), "Multi-mode piezoelectric energy harvesters for wireless sensor network based structural health monitoring", Proceedings of the SPIE vol 6934 69340Z.
12 Zhou, W., Penamalli, G.R. and Zuo, L. (2012), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014.   DOI   ScienceOn
13 Zuo, L. (2009), "Effective and robust vibration control using series multiple tuned-mass dampers", J. Vib. Acoust., 131, 031003.   DOI
14 Den Hartog, J.P. (1947), Mechanical vibration, New York: McGraw-Hill.
15 Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003- 2006)", Smart Mater.Struct., 16(3), R1-R21.   DOI   ScienceOn
16 Bach, U., Lupo, D., Comte, P., Moser, J.E.,Weissortel, F., Salbeck, J., Spreitzer, H. and Gratzel, M. (1998), "Solid-state dyesensitized mesoporous $TiO_2$ solar cells with high photon-to-electron conversion efficiencies", Nature, 395, 583-585.   DOI   ScienceOn
17 Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2001), Wind energy handbook , John Wiley & Sons.
18 Clough, R.W. and Penzien, J. (1993), Dynamics of structures, New York: McGraw-Hill.
19 Cullen, J.R., Teter, J.P., Wun-Fogle, M., Restorff, J.B. and Clark, A.E. (1997), "Magnetic and magnetoelastic studies of single crystal Tb06Dy04Zn at low temperatures", IEEE T. Mag., 33(5), 3949-3951.   DOI   ScienceOn
20 El-hami, M., Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D. and Ross, J.N. (2001), "Design and fabrication of a new vibration-based electromechanical power generator",Sensor. Actuat. A - PHYS, 92(1-3), 335-342.   DOI   ScienceOn
21 Engel, T.G., Keawboonchuay, C. and Nunnally, W.C. (2000), "Energy conversion and high power pulse production using miniature piezoelectric compressors", IEEE T. Plasma Sci., 28(5), 1338-1341.   DOI   ScienceOn
22 Gao, R.X., Kazmer, D.O., Zhang, L., Theurer, C. and Cui, Y. (2004), "Self-powered sensing for mechanical system condition monitoring", Proceedings of the SPIE - Smart Structures and Materials 2004: Sensors and Smart Structures, Technologies for Civil, Mechanical and Aerospace Systems, 5391, 321-330.
23 Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic vibration-powered generator for intelligent sensor systems", Sensor. Actuat. A - Phys, 110(1-3), 344-349.   DOI   ScienceOn
24 James, E.P., Tudor, M.J., Beeby, S.P., Harris, N.R., Glynne-Jones, P., Ross, J.N. and White, N.M. (2004), "An investigation of self-powered systems for condition monitoring applications", Sensor. Actuat. A - Phys, 110(1- 3), 171-176.   DOI
25 Keawboonchuay, C. and Engel, T.G. (2003), "Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions", IEEE T. Ultrason. Ferr., 50(10), 1377-1382.   DOI
26 Leland, E.S. and Wright, P.K. (2006), "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload", Smart Mater. Struct., 15(5), 1413-1420.   DOI   ScienceOn
27 Lee, S., Youn, B.D. and Jung, B.C. (2009), "Robust segment-type energy harvester and its application to a wireless sensor", Smart Mater. Struct., 18(9), 095021.   DOI   ScienceOn
28 Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2005), "Piezoelectric energy harvesting device optimization by synchronous electric charge extraction", J. Intell. Mater. Syst. Struct., 16(10), 865-876.   DOI   ScienceOn
29 Leland, E.S., Lai, E.M. and Wright, P.K. (2004), "A self-powered wireless sensor for indoor environmental monitoring", Proceedings of theWNCG 2004 Wireless Networking Symp., Austin, TX, October 2004.
30 Lesieutre, G.A., Ottman, G.K. and Hofmann, H.F. (2004), "Damping as a result of piezoelectric energy harvesting", J. Sound Vib., 269(3-5), 991-1001.   DOI   ScienceOn
31 Lysne, P.C. and Percival, C.M. (1975), "Electric energy generation by shock compression of ferroelectric ceramics: normal-mode response of PZT 95/5", J. Appl. Phys., 46(4), 1519-1525.   DOI   ScienceOn
32 MacNeil, D.D. and Sargent, E.H. (2006), "Solution-processed infrared photovoltaic devices", Proceedings of the Design Automation Conference (IEEE Cat. No. 06CH37797) .
33 Mitcheson, P.D., Green, T.C., Yeatman, E.M. and Holmes, A.S. (2004), "Architectures for vibration driven micropower generators", J. Microelectrom. S., 13(3), 429-440.   DOI   ScienceOn
34 Morris, D.J., Youngsman, J.M., Anderson, M.J. and Bahr, D.F. (2008), "A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism", Smart Mater. Struct., 17(6), 065021.   DOI   ScienceOn
35 Munteanu, I., Guiraud, J., Roye, D., Bacha, S. and Bratcu, A.I. (2006), "Sliding mode energy-reliability optimization of a variable speed wind power system", Proceedings of the 2006 Int. Workshop on Variable Structure Systems, Alghero, Italy.
36 Neugebauer, H., Brabec, C., Hummelen, J.C. and Sariciftci, N.S. (2000), "Stability and photodegradation mechanisms of conjugated polymer/fullerence plastic solar cells", Solar Energy Mater.Solar Cells, 61(1), 35-42.   DOI   ScienceOn
37 Richard, C.D., Anderson, M.J., Bahr, D.F. and Richards, R.F. (2004), "Efficiency of energy conversion for devices containing a piezoelectric component", J. Micromech. Microeng., 14(5), 717-721.   DOI   ScienceOn
38 Ottman, G.K., Hofmann, H.F., Bhatt, A.C. and Lesieutre, G .A. (2002), "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply", IEEE T. Power Electr., 17(5) 669-676.   DOI   ScienceOn
39 Paradiso, J.A. and Starner, T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervas. Comput., 4(1) 18-27.   DOI   ScienceOn
40 Qi, S., Shuttleworth, R., Oyadiji, S.O. and Wright, J. (2010), "Design of a multiresonant beam for broadband piezoelectric energy harvesting", Smart Mater. Struct., 19(9), 094009.   DOI   ScienceOn
41 Roundy, S, Wright, P.K. and Rabaey, J. (2003)," A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11) 1131-1144.   DOI   ScienceOn
42 Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142.   DOI   ScienceOn
43 Roundy, S. (2005), "On the effectiveness of vibration-based energy harvesting", J. Intell. Mater. Syst. Struct., 16(10), 809-823.   DOI   ScienceOn
44 Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K. and Sundararajan, V. (2005), "Improving power output for vibration-based energy scavengers", IEEE Pervas. Comput., 4(1) 28-36.   DOI   ScienceOn
45 Shahruz, S.M.(2006), "Design of mechanical band-pass filters with large frequency bands for energy scavenging", Mechatronics, 16(9), 523-531.   DOI   ScienceOn
46 Shahruz, S.M. (2008), "Design of mechanical band-pass filters for energy scavenging: multi-degree-offreedom models", J. Vib. Control., 14(5), 753-768.   DOI   ScienceOn
47 Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems," Smart Mater.Struct., 15(6), 1499-1512.   DOI   ScienceOn