DOI QR코드

DOI QR Code

Analysis and simulation of multi-mode piezoelectric energy harvesters

  • Zhang, Ying (School of Electrical and Computer Engineering, Georgia Institute of Technology) ;
  • Zhu, Binghu (School of Electrical and Computer Engineering, Georgia Institute of Technology)
  • Received : 2011.09.01
  • Accepted : 2012.05.22
  • Published : 2012.06.25

Abstract

Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.

Keywords

References

  1. Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003- 2006)", Smart Mater.Struct., 16(3), R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01
  2. Bach, U., Lupo, D., Comte, P., Moser, J.E.,Weissortel, F., Salbeck, J., Spreitzer, H. and Gratzel, M. (1998), "Solid-state dyesensitized mesoporous $TiO_2$ solar cells with high photon-to-electron conversion efficiencies", Nature, 395, 583-585. https://doi.org/10.1038/26936
  3. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2001), Wind energy handbook , John Wiley & Sons.
  4. Clough, R.W. and Penzien, J. (1993), Dynamics of structures, New York: McGraw-Hill.
  5. Cullen, J.R., Teter, J.P., Wun-Fogle, M., Restorff, J.B. and Clark, A.E. (1997), "Magnetic and magnetoelastic studies of single crystal Tb06Dy04Zn at low temperatures", IEEE T. Mag., 33(5), 3949-3951. https://doi.org/10.1109/20.619625
  6. Den Hartog, J.P. (1947), Mechanical vibration, New York: McGraw-Hill.
  7. El-hami, M., Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D. and Ross, J.N. (2001), "Design and fabrication of a new vibration-based electromechanical power generator",Sensor. Actuat. A - PHYS, 92(1-3), 335-342. https://doi.org/10.1016/S0924-4247(01)00569-6
  8. Engel, T.G., Keawboonchuay, C. and Nunnally, W.C. (2000), "Energy conversion and high power pulse production using miniature piezoelectric compressors", IEEE T. Plasma Sci., 28(5), 1338-1341. https://doi.org/10.1109/27.901194
  9. Gao, R.X., Kazmer, D.O., Zhang, L., Theurer, C. and Cui, Y. (2004), "Self-powered sensing for mechanical system condition monitoring", Proceedings of the SPIE - Smart Structures and Materials 2004: Sensors and Smart Structures, Technologies for Civil, Mechanical and Aerospace Systems, 5391, 321-330.
  10. Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic vibration-powered generator for intelligent sensor systems", Sensor. Actuat. A - Phys, 110(1-3), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
  11. James, E.P., Tudor, M.J., Beeby, S.P., Harris, N.R., Glynne-Jones, P., Ross, J.N. and White, N.M. (2004), "An investigation of self-powered systems for condition monitoring applications", Sensor. Actuat. A - Phys, 110(1- 3), 171-176. https://doi.org/10.1016/j.sna.2003.10.057
  12. Keawboonchuay, C. and Engel, T.G. (2003), "Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions", IEEE T. Ultrason. Ferr., 50(10), 1377-1382. https://doi.org/10.1109/TUFFC.2003.1244755
  13. Lee, S., Youn, B.D. and Jung, B.C. (2009), "Robust segment-type energy harvester and its application to a wireless sensor", Smart Mater. Struct., 18(9), 095021. https://doi.org/10.1088/0964-1726/18/9/095021
  14. Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2005), "Piezoelectric energy harvesting device optimization by synchronous electric charge extraction", J. Intell. Mater. Syst. Struct., 16(10), 865-876. https://doi.org/10.1177/1045389X05056859
  15. Leland, E.S., Lai, E.M. and Wright, P.K. (2004), "A self-powered wireless sensor for indoor environmental monitoring", Proceedings of theWNCG 2004 Wireless Networking Symp., Austin, TX, October 2004.
  16. Leland, E.S. and Wright, P.K. (2006), "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload", Smart Mater. Struct., 15(5), 1413-1420. https://doi.org/10.1088/0964-1726/15/5/030
  17. Lesieutre, G.A., Ottman, G.K. and Hofmann, H.F. (2004), "Damping as a result of piezoelectric energy harvesting", J. Sound Vib., 269(3-5), 991-1001. https://doi.org/10.1016/S0022-460X(03)00210-4
  18. Lysne, P.C. and Percival, C.M. (1975), "Electric energy generation by shock compression of ferroelectric ceramics: normal-mode response of PZT 95/5", J. Appl. Phys., 46(4), 1519-1525. https://doi.org/10.1063/1.321803
  19. MacNeil, D.D. and Sargent, E.H. (2006), "Solution-processed infrared photovoltaic devices", Proceedings of the Design Automation Conference (IEEE Cat. No. 06CH37797) .
  20. Mitcheson, P.D., Green, T.C., Yeatman, E.M. and Holmes, A.S. (2004), "Architectures for vibration driven micropower generators", J. Microelectrom. S., 13(3), 429-440. https://doi.org/10.1109/JMEMS.2004.830151
  21. Morris, D.J., Youngsman, J.M., Anderson, M.J. and Bahr, D.F. (2008), "A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism", Smart Mater. Struct., 17(6), 065021. https://doi.org/10.1088/0964-1726/17/6/065021
  22. Munteanu, I., Guiraud, J., Roye, D., Bacha, S. and Bratcu, A.I. (2006), "Sliding mode energy-reliability optimization of a variable speed wind power system", Proceedings of the 2006 Int. Workshop on Variable Structure Systems, Alghero, Italy.
  23. Neugebauer, H., Brabec, C., Hummelen, J.C. and Sariciftci, N.S. (2000), "Stability and photodegradation mechanisms of conjugated polymer/fullerence plastic solar cells", Solar Energy Mater.Solar Cells, 61(1), 35-42. https://doi.org/10.1016/S0927-0248(99)00094-X
  24. Ottman, G.K., Hofmann, H.F., Bhatt, A.C. and Lesieutre, G .A. (2002), "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply", IEEE T. Power Electr., 17(5) 669-676. https://doi.org/10.1109/TPEL.2002.802194
  25. Paradiso, J.A. and Starner, T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervas. Comput., 4(1) 18-27. https://doi.org/10.1109/MPRV.2005.9
  26. Qi, S., Shuttleworth, R., Oyadiji, S.O. and Wright, J. (2010), "Design of a multiresonant beam for broadband piezoelectric energy harvesting", Smart Mater. Struct., 19(9), 094009. https://doi.org/10.1088/0964-1726/19/9/094009
  27. Richard, C.D., Anderson, M.J., Bahr, D.F. and Richards, R.F. (2004), "Efficiency of energy conversion for devices containing a piezoelectric component", J. Micromech. Microeng., 14(5), 717-721. https://doi.org/10.1088/0960-1317/14/5/009
  28. Roundy, S, Wright, P.K. and Rabaey, J. (2003)," A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11) 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  29. Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
  30. Roundy, S. (2005), "On the effectiveness of vibration-based energy harvesting", J. Intell. Mater. Syst. Struct., 16(10), 809-823. https://doi.org/10.1177/1045389X05054042
  31. Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K. and Sundararajan, V. (2005), "Improving power output for vibration-based energy scavengers", IEEE Pervas. Comput., 4(1) 28-36. https://doi.org/10.1109/MPRV.2005.14
  32. Shahruz, S.M.(2006), "Design of mechanical band-pass filters with large frequency bands for energy scavenging", Mechatronics, 16(9), 523-531. https://doi.org/10.1016/j.mechatronics.2006.04.003
  33. Shahruz, S.M. (2008), "Design of mechanical band-pass filters for energy scavenging: multi-degree-offreedom models", J. Vib. Control., 14(5), 753-768. https://doi.org/10.1177/1077546307083274
  34. Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems," Smart Mater.Struct., 15(6), 1499-1512. https://doi.org/10.1088/0964-1726/15/6/001
  35. Snyder, G.J., Lim J.R., Huang, C.K. and Fleurial, J.P. (2003), "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process", Nature Mater., 2(8), 528-531. https://doi.org/10.1038/nmat943
  36. Sodano, H. A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib., 36(3), 197-205. https://doi.org/10.1177/0583102404043275
  37. Sterken, T., Fiorini, P., Baert, K., Puers, T. and Borghs, G. (2003), "An electret-based electrostatic m-generator", Transducers, 3(2), 1291-1294.
  38. Tiwari, R., Kim, K.J. and Kim, S. (2008), "Ionic polymer-metal composite as smart velocity sensors and energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549
  39. Venkatasubramanian, R., Silivola, E., Colpitts, T. and O'Quinn, B. (2001), "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, 413(6856), 597-602. https://doi.org/10.1038/35098012
  40. Xu, C.N., Akiyama, M., Sun, P. and Watanabe, T. (1997), "Novel approach to electrochromism in $WO_3$ thin film using piezoelectric ceramics as power supply", Appl. Phys. Lett., 70(13), 1639-1640. https://doi.org/10.1063/1.118654
  41. Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P. and Feng, H. (2009), "Electromagnetic energy harvesting from vibrations of multiple frequencies", J. Micromech Microeng., 19(3), 035001. https://doi.org/10.1088/0960-1317/19/3/035001
  42. Yen, B.C. and Lang, J.H. (2006) "A variable-capacitance vibration-to-electric energy harvester", IEEE T. Circ. Syst. Vid., 53(2), 288-295. https://doi.org/10.1109/TCSI.2005.856043
  43. Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J. (1995), "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Science, 270(5243), 1789-1791. https://doi.org/10.1126/science.270.5243.1789
  44. Yu, G. and Heeger, A.J. (1995), "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions", J. Appl. Phys., 78(7), 4510-4515. https://doi.org/10.1063/1.359792
  45. Zhang, Y. and He, W. (2008), "Multi-mode piezoelectric energy harvesters for wireless sensor network based structural health monitoring", Proceedings of the SPIE vol 6934 69340Z.
  46. Zhou, W., Penamalli, G.R. and Zuo, L. (2012), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014. https://doi.org/10.1088/0964-1726/21/1/015014
  47. Zuo, L. (2009), "Effective and robust vibration control using series multiple tuned-mass dampers", J. Vib. Acoust., 131, 031003. https://doi.org/10.1115/1.3085879

Cited by

  1. Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers vol.16, pp.4, 2015, https://doi.org/10.12989/sss.2015.16.4.579
  2. Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes vol.14, pp.2, 2014, https://doi.org/10.12989/sss.2014.14.2.247