• Title/Summary/Keyword: Multi beam simulation

Search Result 165, Processing Time 0.027 seconds

Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Chan Hyeong;Shin, Dong Ho;Jeong, Jong Hwi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.533-538
    • /
    • 2019
  • The mechanical-collimation imaging is the most mature technology in prompt gamma (PG) imaging which is considered the most promising technology for beam range verification in proton therapy. The purpose of the present study is to compare the performances of two mechanical-collimation PG cameras, knife-edge (KE) camera and multi-slit (MS) camera. For this, the PG cameras were modeled by Geant4 Monte Carlo code, and the performances of the cameras were compared for imaginary point and line sources and for proton beams incident on a cylindrical PMMA phantom. From the simulation results, the KE camera was found to show higher counting efficiency than the MS camera, being able to estimate the beam range even for $10^7$ protons. Our results, however, confirmed that in order to estimate the beam range correctly, the KE camera should be aligned, at least approximately, to the location of the proton beam range. The MS camera was found to show lower efficiency, being able to estimate the beam range correctly only when the number of the protons is at least $10^8$. For enough number of protons, however, the MS camera estimated the beam range correctly, errors being less than 1.2 mm, regardless of the location of the camera.

Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model

  • Elmerabet, Abderrahmane Hadj;Heireche, Houari;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, the critical buckling temperature of single-walled Boron Nitride nanotube (SWBNNT) is estimated using a new nonlocal first-order shear deformation beam theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of SWBNNT and is based on assumption that the inplane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. Results indicate the importance of the small scale effects in the thermal buckling analysis of Boron Nitride nanotube.

Application of a Modular Multi-Gaussian Beam Model to Ultrasonic Wave Propagation with Multiple Interfaces

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Schmerr Lester W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2005
  • A modular Gaussian beam model is developed to simulate some ultrasonic testing configurations where multiple interfaces are involved. A general formulation is given in a modular matrix form to represent the Gaussian beam propagation with multiple interfaces. The ultrasonic transducer fields are modeled by a multi-Gaussian beam model which is formed by superposing 10 single Gaussian beams. The proposed model, referred to as "MMGB" (modular multi-Gaussian beam) model, is then applied to a typical contact and angle beam testing configuration to predict the output signal reflected from the corner of a vertical crack. The resulting expressions given in a modular matrix form are implemented in a personal computer using the MATLAB program. Simulation results are presented and compared with available experimental results.

A Study on Multi Target Elevation Angle Estimation of Hight Directivity using Multi Stacked Beam Forming (다중 스택 빔 형성을 이용한 고 지향성의 다중 목표물 고각 추정에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.129-135
    • /
    • 2011
  • In this paper, we propose a multi target's elevation angle estimation method using multi beam forming technique. This method make a stacked beam to digital processing a received signal in array element. There can be desired receiving beam to application weight value at antenna element in beam forming. Currently, we are to make multi stacked beam using fast fourier transform in stead of phase shifter to be a computer performance much improvement. Also, we improve multi beam directivity using beam steering error correction technique in order to beam steering to desired direction in receiver. Through simulation, we show that the proposed elevation estimation method based on fast fourier transform and beam steering error correction technique, improves th performance of target estimation compared to previous method.

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

Fabrication of Analysis Tool for Performance Verification of Naval Multi Function Radar (함정용 다기능레이다 성능검증을 위한 분석도구 제작)

  • Choi, Hong-Jae;Park, Myung-Hoon;Riew, oo-Gon;Kwon, Sewoong;Lee, Ki-Won;Kang, Yeon-Duk;Yo, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • The system performance of naval multi function radar is affected by radar beam operation. Multi f function radar has to operate complicated beam better than search radar and tracking radar which have single operation. This paper describes fabricating analysis tool for the verification method for system performance of naval multi function radar. We composed the model that naval ship with MFR and radar which are detecting targets to verification the system performance. The targets are composed anti-aircraft and anti-ship. We integrate each model and make naval MFR simulator that applied resource management of track beam and search beam. We verify analysis tool by simulation in operating scenario after adjusting system parameter to analysis tool.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Dynamic analysis of nanoscale beams including surface stress effects

  • Youcef, Djamel Ould;Kaci, Abdelhakim;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • In this article, an analytic non-classical model for the free vibrations of nanobeams accounting for surface stress effects is developed. The classical continuum mechanics fails to capture the surface energy effects and hence is not directly applicable at nanoscale. A general beam model based on Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin and thick beams. Thus, surface energy has a significant effect on the response of nanoscale structures, and is associated with their size-dependent behavior. To check the validity of the present analytic solution, the numerical results are compared with those obtained in the scientific literature. The influences of beam thickness, surface density, surface residual stress and surface elastic constants on the natural frequencies of nanobeams are also investigated. It is indicated that the effect of surface stress on the vibrational response of a nanobeam is dependent on its aspect ratio and thickness.

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory

  • Rakrak, Kaddour;Zidour, Mohamed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Chemi, Awda
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2016
  • This article is concerned with the free vibration problem for chiral double-walled carbon nanotube (DWCNTs) modelled using the non-local elasticity theory and Euler Bernoulli beam model. According to the governing equations of non-local Euler Bernoulli beam theory and the boundary conditions, the analytical solution is derived and two branches of transverse wave propagating are obtained. The numerical results obtained provide better representations of the vibration behaviour of double-walled carbon nanotube, where the aspect ratio of the (DWCNTs), the vibrational mode number, the small-scale coefficient and chirality of double-walled carbon nanotube on the frequency ratio (${\chi}^N$) of the (DWCNTs) are significant. In this work, the numerical results obtained can be used to predict and prevent the phenomenon of resonance for the forced vibration analyses of double -walled carbon nanotubes.

A Study on the Analysis of Multi-beam Energy for High Resolution with Maskless Lithography System Using DMD (DMD를 이용한 마스크리스 리소그래피 시스템의 고해상도 구현을 위한 다중 빔 에너지 분석에 관한 연구)

  • Kim, Jong-Su;Shin, Bong-Cheol;Cho, Yong-Kyu;Cho, Myeong-Woo;Lee, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.829-834
    • /
    • 2011
  • Exposure process is the most important technology to fabricate highly integrated circuit. Up to now, mask type lithography process has been generally used. However, it is not efficient for small quantity and/or frequently changing products. Therefore, maskless lithography technology is raised in exposure process. In this study, relations between multi-beam energy and overlay were analyzed. Exposure experiment of generating pattern was performed. It was from presented scan line by multi- beam simulation. As a result, optimal scan line distance was proposed by simulation, and micro pattern accuracy could be improved by exposure experiment using laser direct imaging system.