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Application of a Modular Multi-Gaussian Beam Model to
Ultrasonic Wave Propagation with Multiple Interfaces

Hyunjo Jeong*T, Moon-Cheol Park** and Lester W. Schmerr, Jr.%**

Abstract A modular Gaussian beam mode! is developed to simulate some ultrasonic testing configurations where

multiple interfaces ate involved. A general formulation is given in a modular matrix form to represent the Gaussian
beam propagation with multiple interfaces. The ultrasonic transducer fields are modeled by a multi-Gaussian beam
model which is formed by superposing 10 single Gaussian beams. The proposed model, referred to as “MMGB”
(modular multi-Gaussian beam) model, is then applied to a typical contact and angle beam testing configuration to
predict the output signal reflected from the corner of a vertical crack. The resulting expressions given in a modular

matrix form are implemented in a personal computer using the MATLAB program. Simulation results are presented

and compared with available experimental results.

Keywords : Gaussian beam, modular form, multiple interface, transducer field, angle beam testing, crack corner

reflection

1. Introduction

Modeling ultrasonic transducer fields is an
important part when simulating a nondestructive
evaluation (NDE) system. For this purpose,
multi-Gaussian beam models (Song et al. 2004,
Kim et al. 2004) have been used to describe
the propagation of ultrasonic beams from piston
transducers in many testing situations including
multiple interfaces. As the number of interfaces
increases, however, the analytical expressions for
the amplitude and phase of a Gaussian beam
become increasingly complex. Such cases can
arise in practice, for example, when using angle
shear (Kim et al. 2004). A
modular Gaussian beam model (Schmerr and
Sedov 2003) has been
alternative  approach.

beam waves

developed as an
It provides an efficient

formulation for ultrasound propagation because
of its
interface

highly modular form after multiple

interactions. The modular Gaussian
approach was used to calculate the ultrasonic
propagating through a multilayered
isotropic medium  with  different
curvatures (Huang et al. 2004).

In this paper, we briefly describe a highly

beams

interface

modular multi-Gaussian beam model that can be
efficiently used to simulate the propagation of
solid with
multiple interfaces. The model is then applied

uitrasonic beams in an isotropic

to predict the received voltage of corner

reflection from a surface-breaking crack in a

contact, angle beam testing configuration.
Simulation results are presented for these
problems and  compared with  available

experimental results.
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Fig. 1

A Gaussian beam propagation through a curved interface between a fluid and an

isotropic solid. A modular Gaussian beam model can be formulated using the
concept of global matrix composed of propagation matrices in medium 1 and 2,
and transmission matrix from medium 1 to 2.

2. Modular multi-Gaussian beam model

We will describe the modular Gaussian
approach for the immersion setup shown in Fig.
1 where a Gaussian beam is radiated at oblique
incidence through a curved fluid-isotropic solid
interface. For the geometry of Fig. 1, we will
assume that a Gaussian velocity profile is present

at the transducer and propagates as a Gaussian

beam into the fluid. In Fig. 1, ¥1(0)and M,(0)
are the known starting amplitude and phase
values in the Gaussian at the transducer location

(f3 :O). The distances *3 is taken as the
propagation distances along the central axis of
the Gaussian beam.

When the incident Gaussian beam strikes the
curved fluid-solid interface, two refracted waves
(compressional (P) and shear (S) waves) will be
transmitted into the solid and one compressional
wave will be reflected back into the fluid. In
order to describe the transmitted waves in the

solid we employ the coordinates (J’I’)’z’% )
taken along and perpendicular to the refracted

waves. In the solid, V3 s measured along the
wave vector direction for a particular refracted
wave type of a(a=p or ).

2.1. Propagation of a Gaussian beam - fluid,

interface, and isotropic solid

The velocity amplitude (%3)  and phase

M (X3) of a propagating Gaussian beam in the
fluid can be completely described by solving the
paraxial wave equation (Huang 2004). When this
Gaussian beam strikes a fluid-solid
reflected and transmitted Gaussian beams are

Vza V)] and

interface,

generated.  The  amplitude

polarization vector d?® of the wave type «

transmitted in the solid at the interface (% = 0)
in the paraxial approximation can be found by
solving for the problem of the transmission of a
plane wave at a planar interface. Thus, the
refraction angles of fransmitted waves in the
solid can be determined by Snell’s law, and the

VY (0 can  be
multiplying the incident wave by the appropriate

amplitude determined by

plane wave transmission coefficient. Obtaining

the phase at the interface, MS’(O), is more
complicated. It involves matching the phases of

the incident and transmitted waves at the
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interface and approximating the interface surface
to second order (if it is curved) (Schmerr and
Sedov 2003) near the point where the central
ray of the incident Gaussian strikes the interface.
In the solid, the propagation laws for either a P-

or S-wave (Gaussian amplitude and phase,

Vza(%) and M7 @3)) follow the same law as
in the fluid.

2.2. A Modular Gaussian beam model

If we combine all of our previous results, it is
possible to express the Gaussian beam in a
modular matrix form by writing terms such as

M3 (7;) directly in terms of the known M;(0)

by introducing global matrices (AG,BG,CG,DG)
where

G- |A° BY|_|AD BY|lAl, Bi[|Al B
cé p°| |t Dy|ci, D,|cr pF
1)

In terms of global matrices, one can show that
(Huang 2004)

(s ML JaetlaL ]

Jdet{A® +BS M|

_ |Pcn AQNS
P1Car yJdet|A° +B° M, (0)]

M%(%):[DG M, (0) + CG][BG M, (0) + AGT’ 3

T_vlg;,b’ _ Ta;ﬂ P2Cq2 COS 0(12
=Lyt T .
where PICp €08y is  the

normalized transmission coefficient for an

incident wave of type 3 and a transmitted

T%E .
wave of type . Here, 12 is the usual
transmission coefficient based on the particle
(Rudolph  1999).
expressions can be obtained for the interface
reflection, although not shown here. In Eq. (3),
M (0) =+ 2

cp1 Ro  kywg , where o

velocity  ratio Similar

and Yo

of the
Gaussian profile in the plane of transducer face,

are radius of curvature and width

Cpl and kpl the wave speed and the wave

number in the fluid, and 1 a 2x2 identity matrix.
In Eq. (1), the

propagation  matrices

(Ap,Bip,Cf:ij) in the fluid are given by

1 o] ., _[1o
Af)=DfJ:[O J By :Cp1x3|:0 J

C)
o
cl=
00
For a fluid/isotropic solid interface the
transmission matrices in Eq. )

4 .
(Al2,Bi2,Cl2, Diz) are given by

cosd,, 0 0
4= cosf,, Bf, =
0o 1] 0 o4,
hll h12
;| €050, cosh,, | cosB, cosb,, cosb,, .
2= c - c By (5)
pl a2 —_— h22
cosp, s
cosd,,
Dj, = cosb,,
0 1
Similarly, the propagation matrices
p P, . .
(Af,prclez) in the solid are
1 0 1 0
P P ¥
A; =Dj :{0 1} B; =Ca2y3{0 J
(6)

00
cl =
o

In Egs. (3)~(5), €p! is the P-wave velocity in the
fluid, while €z2 is the velocity for a wave of
(M1, Ma=hy, Moy are

the curvatures of the
perpendicular to the plane of incidence.

type & in the solid.

interface 1n and

2.3. Propagation through multiple interfaces

The modular way of expressing the Gaussian

beam  propagation can be  conveniently

generalized for the case of N transmissions or
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reflections. In this case, the velocity of the

Gaussian beam at a point Y =(y1.¥2.73) in the

Nth medium can be written as

N
V(0)yd“ b
i) e PO

Py Cany y/det|A” +BY M, (0)
N+4I x 1
xexp| iw Z¢+EYTMi+I(;3)Yj

m=| Cgm
Y= [J’1 Y2 ]T @)

T . . .
where T4 is the normalized appropriate

transmission coefficient for the mth interface and
Cam is the magnitude of the phase velocity for

the appropriate wave in the mth medium. In this
case we also have

M%n(%):[DG M, (0) + CG][BG M;(0) + AGF ®)

where

G = A(J_v B(J: _|A%a BLL| Al Bi,j|Af B ©)
c® 09| [¢h, DL, Ci, Pl D

2.4. Modular multi-Gaussian beam model

Using the approach of Wen and Breazeale
(Wen and Breazeale 1988), by the superposition
of 10 Gaussian beams, one can model the
corresponding wave field of a circular piston
source (of radius a). In this manner, Eq. (7) can
be written as

N
Vo4, d* []1,:4

10 m o+l
_ P Cpl m=|

v(w)=
Pt Coquany nml JdetlAG +B° (MI(O))j
. N+I xm 1 , « -
xexp| i Z—+5Y MS, ()Y
m=1 cam
(10)
2iB
M, (0)), = 2 |
where (M, (0, wa® ., and A, and By are

ten complex constants (Wen and Breazeale
1988). Eq. (10) provides
formulation for modeling the wave fields of

a highly efficient

ultrasonic transducers in very complex testing

situations, and will be referred to as the

“MMGB” model.

3. Simulation of reflection from the comer of

a vertical crack

We have described a highly modular
multi-Gaussian beam (MMGB) approach for the
immersion setup shown in Fig. 1. The modular
model, however, is also directly applicable to a
variety of contact and angle-beam testings as
well. We consider a typical contact, angle beam
testing as shown in Fig. 2. The specimen used in
this study is a steel plate of 10 mm height and

254 mm width (We). The depth (") of a
surface breaking crack is 2 mm. For the angle
beam testing, a longitudinal wave transducer (5
MHz center frequency and 9.5 mm diameter) is
mounted on a Lucite wedge to generate a 45°
refracted shear wave into the specimen. The
distance of central beam path within the wedge

is 10 mm.

Steel

llustration of a contact, angle beam
ultrasonic testing for a surface breaking
crack and typical waveforms of received
signal.

Fig. 2

The received signals for this configuration
are typically composed of three parts due to: (1)
crack tip diffraction (denoted by “D”), (2)
reflection from around the crack corner (denoted
by “R”), and (3) reflection from the bottom of
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the specimen and then crack-tip diffraction plus
diffraction from the tip and then reflection from
the bottom (denoted by “RD/DR”).

We apply the MMGB model to predict the
second part of the received signal only. When the
axis of the central beam aims at the crack cormer,
the upper half of the incident beam will hit the
crack face first and then reflected from the bottom
surface of the specimen. The lower half of the
incident beam will impinge on the bottom surface
first and then reflected from the crack face.
Consequently, these two beams will experience the
same travel path and transmissions/reflections. So
the total beam will normally strike the crack
beight of 2 A, as shown in Fig. 3.

Fig. 3 A schematic representation of angle beam
ultrasonic testing to calculate the received
signal due to reflection from the crack
corner when the axis of central beam
aims at the crack corner.

The received voltage due to the reflection from
the crack corner can be calculated by taking the

average velocity of V(@) over the transducer

face ST multiplied by the system efficiency
factor A(®@) (Schmerr 1998):

V(@) =—/’§ﬂsf V@) dS an
T S;

where V(@)

receiving transducer face given by

is the particle velocity at the

- AT T R
1) IMI Z \/det[A(’+BG (M, (0), ]

exp[ia) (ﬁ L2y %YTMf(z])Yﬂdhdw

Cp] CSZ

12)

and

M4p(zl)=[DG M, (0) + CG][BG M, (0) + AGTI (13)

The reflection coefficient R33° in Eq. (12) is
calculated for the 45° shear wave incidence. The

system efficiency factor B(@) will be discussed
later. The global matrices in the Gaussian phase
in Eq. (13) are given by

AY BY| (A Bi|lA, B,| A7 Bf
¢ p°] [c; prjlcy, Dy oDf 14
A% B | |AD BY| A, B, | |A7 B
C, D] [C DI]|C, Dij[C DY

For propagation and transmissions/reflection
matrices in Eq. (14), we have

10 10
A{’=Af{=[0 J B,P:Bf;:clzl[o J

cosd,
t
A2 = cosb, B, - 00
0 1 00
cos6, 0
Cl = cosf cosb, |0 0 D!, =| cosa
2= 00 2
I cy 0 1

10
Ag:Ag{ } BZ =B/

3 10
=cy2y 01

cost, 0
Ay = cosd, Ty = 00
0 1 0 0
cost,
0 - 0
cr, = cosB, . c0s6, [0 } D% =| " cose,
Cy Cq 00 0 1
cost, 0
At34 =| cosb, Bf34 — 00
0 1 0 0
cosd,

0 —= 0
Cchy = cost; _cosy |9 D, = cosf,
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where ¢ =€C4 :2680m/s, Cr=C3 :3240m/s,

0,=6,=358° 0,=0;, =45°
4. System efficiency factor

actual ultrasonic

quantity that is usually measured is a voltage

In an experiment, the

versus time, Vo). If this voltage signal is

digitized and Fourier transformed, we will have

Vo(®@)  For a

assumed that

the voltage versus frequency,

linear ultrasonic system, it is

Vol@) s proportional to the average velocity
received by a transducer. The average velocity is
provided by a model, as shown previously.

In the measurement of an output voltage
from a flaw, for instance, there are involved a
number  of

physical  processes such as

pulser/receiver, cables, piezoelectric effect of

transducer, material attenuation,
diffraction,
scattering. Among these elements, the parameters
effect,

pulser/receiver and cables are difficult to model,

propagation,
transmission/reflection, and flaw

associated  with  the  piezoelectric
although not impossible (Dang and Schmerr
2001). We can avoid this difficulty by grouping
all these hard-to-model terms

into a single

parameter which is called the system efficiency
factor, P(®) . With the aid of A(®@) the direct

comparison can be made between model
prediction and experiment.
factor can be

The system efficiency

determined by the deconvolution of an

experimental signal [Vo(a))] captured for the

reference reflector by the model-predicted signal

[Vr(®)] for the same configuration. Since, as is
well known, such deconvolution is sensitive to
noise, it is usually performed with the aid of a

Wiener filter W(a))’ ie.

Vo(@)

plor= Vr(®)

W(w) (15)

In this study, it is decided to use the circular
part of the STB-A1 block (Fig. 4) as a reference
reflector. This reflector was also used by Kim
(2002). Fig. 5(a)
experimental signal captured from the circular
part of the STB-Al block with a 5 MHz, 9.5
mm diameter transducer. By the deconvolution of

and Song shows  the

this signal by the model-based reference reflector
signal we can determine the system efficiency
factor as shown in Fig. 5(b).

24

STB-A1 BLOCK

reference
system

Fig. 4 STB-A1 block used as a
reflector for determining the

efficiency factor Blw)
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Fig. 5 (a) An experimental reference signal
acquired from the circular part of the
STB-A1 block, and (b) the calculated
system efficiency factor.
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5. Model prediction and comparison with

experiment

In order to calculate the MMGB model
prediction, the resulting expression given in Eq.
11 was implemented in a personal computer
using the MATLAB program. Fig. 6(a) shows
the calculated waveforms when the axis of
central beam aims at the crack corner. The
present model only predicts the signal reflected

from the crack comer, so it does not present the -

first and third parts of signal usually observed in
an angle beam testing with crack present (These
signals are schematically illustrated in Fig. 2).

It is important to verify the proposed MMGB
model by experiments for further applications of
the model in many practical NDE problems. The
experiment was also conducted for the current
problem with the same equipment settings as in
the  reference  reflector  experiment.  The
experimental measurements are shown in Fig. 6(b).
Comparisons of Figs. 6(a) and 6(b) exhibit a good
agreement in terms of amplitude and waveform
shape. The experimental signal also shows the
signal groups diffracted from the crack tip.
The relatively good agreement
the high accuracy of the

for simulating the

demonstrates
developed model
multiple  propagation and
transmissions/reflections  problem. The  good
agreement observed in this investigation suggests
that the proposed MMG model can be used
for simulating the multiple propagation and

transmissions/reflections ~ problems  with  high

accuracy.

6. Conclusion

We have described a highly modular
multi-Gaussian beam (MMGB) model that can be
efficiently used to simulate the propagation of
fields solid with
multiple interfaces. The model was applied to a
contact,

ultrasonic in an isotropic

angle beam testing for a surface

breaking crack where multiple propagation and
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Fig. 6 Comparison of the MMGB model prediction
(a) and the experiment (b) when the axis
of central beam aims at the crack corner.

transmissions are involved. Model prediction
was made to predict the crack corner reflection
signal when the axis of the central beam aims at
the crack corner. The model prediction agreed
well with the experiment. The good agreement
observed in this investigation suggests that the
proposed MMG model can be wused for

simulating the multiple propagation and
with  high

accuracy. The proposed MMGB model can be

transmissions/reflections  problems

extended to the case of anisotropic materials with
multiple interfaces.
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