• 제목/요약/키워드: Moving Path Control

검색결과 187건 처리시간 0.03초

이동체 모의시험을 위한 경로 생성 및 추종 시뮬레이터 개발 (Development of Path Generation and Following Simulator for a Simulation Test of a Moving Object)

  • 한영민;홍동호;장택수
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.842-849
    • /
    • 2018
  • This research suggests the development of simulator for a Simulation Test of a moving object's path generation and following. There are many kinds of moving objects in weapon systems, such as vehicles, missiles, robots and so on. So need tests of moving simulations during development process of weapon systems. To simulate a moving object, need an flexible path. So this report suggests a $B\acute{e}zier$ curve algorithm for generation of smooth curve path. And when new developments of weapon systems are started, many kinds of simulators are created. But, these simulators are not reused in other project because there are different kinds of development environment. So need to allow users to add specific features, And this report suggests using Dynamic Link Library(DLL).

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

확장 칼만 필터와 경로계획을 이용한 쿼드로터 실외 위치 추정 (Outdoor Localization for a Quad-rotor using Extended Kalman Filter and Path Planning)

  • 김기정;이동주;김윤기;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1175-1180
    • /
    • 2014
  • This paper proposes a new technique that produces improved local information using a low-cost GPS/INS system combined with Extended Kalman Filter and Path Planning when a Quad-rotor flies. In the research, a low-cost GPS is combined with INS by Extended Kalman Filter to improve local information. However, this system has disadvantages in that estimation accuracy is getting worsens when the Quad-rotor flies through the air in a curve and precision of location information is influenced by performance of the used GPS. An algorithm based on Path Planning is adopted to deal with these weaknesses. When the Quad-rotor flies outdoors, a short moving path can be predicted because all short moving paths of quad-rotor can be assumed to be straight. Path planning is used to make the short moving path and determine the closest local information of data of the GPS/INS system to location determined by path planning. Through the foregoing process, improved local data is obtained when the quad-rotor flies, and the performance of the proposed system is verified from various outdoor experiments.

2차원 경로상에서 이동물체에 대한 로봇의 회피 알고리즘 (Avoidance Algorithm of a Robot about Moving Obstacle on Two Dimension Path)

  • 방시현;원태현;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.327-330
    • /
    • 1995
  • If a mobile robot is used in a real situation, robot must face a moving obstacles. In that case, the collision avoidance algorithm for moving obstacle is a indispensible element in mobile robot control. We csrried out a research to find and evaluate the advanced algorithm for mobile robot. At first we generate the continous path for mobi;e robot. Then by creating a curved path for avoidance, the mobile robot can change its path smoothly. Smoothed path made the robot adapt more effectively to the changing of path. Under time-varying condition, computer simulation was performed to show the validation of proposed algorithm.

  • PDF

단일곡률궤적과 칼만필터를 이용한 이동로봇의 동적물체 추종 (Moving Object Following by a Mobile Robot using a Single Curvature Trajectory and Kalman Filters)

  • 임현섭;이동혁;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.599-604
    • /
    • 2013
  • Path planning of mobile robots has a purpose to design an optimal path from an initial position to a target point. Minimum driving time, minimum driving distance and minimum driving error might be considered in choosing the optimal path and are correlated to each other. In this paper, an efficient driving trajectory is planned in a real situation where a mobile robot follows a moving object. Position and distance of the moving object are obtained using a web camera, and the rotation angular and linear velocities are estimated using Kalman filters to predict the trajectory of the moving object. Finally, the mobile robot follows the moving object using a single curvature trajectory by estimating the trajectory of the moving object. Using the estimation by Kalman filters and the single curvature in the trajectory planning, the total tracking distance and time saved amounts to about 7%. The effectiveness of the proposed algorithm has been verified through real tracking experiments.

단일곡률궤적을 이용한 이동물체의 포획 알고리즘 (A Capturing Algorithm of Moving Object using Single Curvature Trajectory)

  • 최병석;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

신경 회로 이론을 이용한 이동 로보트의 경로 제어에 관한 연구 (Path control for a mobile robot using neural network)

  • 신철균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.710-715
    • /
    • 1990
  • This paper presents a path control method for mobile robot using neural network and a systematic method for the kinematic and dynamic modelling of a mobile robot. The robot finds its path deviation by taking the signals of an optical array sensor and determined its moving behaviors using neural net control method. A robot can be taught behaviors by changing the given patterns, in this work, Back Propagation rule is used as a learning method.

  • PDF

Spatial target path following and coordinated control of multiple UUVs

  • Qi, Xue;Xiang, Peng;Cai, Zhi-jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.832-842
    • /
    • 2020
  • The coordination control of multiple Underactuated Underwater Vehicles (UUVs) moving in three dimensional space is investigated in this paper. The coordinated path following control task is decomposed into two sub tasks, that is, path following control and coordination control. In the spatial curve path following control task, path following error dynamics is build in the Serret-Frenet coordinate frame. The virtual reference object can be chosen freely on the desired spatial path. Considering the speed of the UUV, the line-of-sight navigation is introduced to help the path following errors quickly converge to zero. In the coordination control sub task, the communication topology of multiple UUVs is described by the graph theory. The speed of each UUV is adjusted to achieve the coordination. The path following system and the coordination control system are viewed as the feedback connection system. Input-to-state stable of the coordinated path following system can be proved by small gain theorem. The simulation experiments can further demonstrate the good performance of the control method.

HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발 (Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model)

  • 조현수;박민규;이현정;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.