• Title/Summary/Keyword: Moving Mesh Technique

Search Result 66, Processing Time 0.021 seconds

Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.435-447
    • /
    • 2011
  • A Computational Fluid Dynamics model is presented in this study for the simulation of the complex fluid flows with free surfaces inside the Tuned Liquid Column Dampers in horizontal motion. The characteristics of the fluid model of the TLCD in horizontal motion include the free surface of the multiphase flow and the horizontal moving frame. In this study, the time depend unsteady Standard ${\kappa}-{\varepsilon}$ turbulent model based on Navier-Stokes equations is chosen. The volume of fluid (VOF) method and sliding mesh technique are adopted to track the free surface of water inside the vertical columns of TLCD and treat the moving boundary of the walls of TLCD in horizontal motion. Several model solution parameters comprising different time steps, mesh sizes, convergence criteria and discretization schemes are examined to establish model parametric independency results. The simulation results are compared with the experimental data in the dimensionless amplitude of the water column in four different configured groups of TLCDs with four different orifice areas. The predicted natural frequencies and the head loss coefficient of TLCDs from CFD model are also compared with the experimental data. The predicted numerical results agree well with the available experimental data.

A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION (Radial Basis Function을 사용한 격자 변형에 대한 연구)

  • Je, S.Y.;Jung, S.K.;Yang, Y.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

Finite element analysis of flow with moving free surface by volume of fluid method (VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석)

  • Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth (해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성)

  • Shin, Mun-Beom;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

Numerical Analysis on Flow Characteristics of a Vane Pump (Vane Pump의 유동 특성에 대한 수치 해석)

  • Lee, Sang-Hyuk;Jin, Bong-Yong;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, the characteristic of a vane pump of automotive power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are observed. As a result of flow characteristics, The difference of pressure between both side of vane tip causes the back flow into the rotor. As the rotational velocity increases, the flow rate at the outlet and the pressure in the vane tip rises with higher amplitude of oscillation. In order to reducing the oscillation, the design of devices for decreasing the cross-area of the outlet part and returning the flow from the outlet to the inlet is required.

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STAT10N CAUSED BY PASSING TRAINS (상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.64-67
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique is adopted considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel of platform are included in a computational domain and detailed shape of train is also modeled Numerical analyses were conducted on five operational condition which are different velocity variation of subway train, existence of stationary train and passing each other trains. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation was found to be satisfactory to various foreign standards.

  • PDF

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STATION CAUSED BY PASSING TRAINS (상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is used with actual operational condition of subway train by adopting the moving mesh technique considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel connecting the stations are included in a computational domain with modeling the detailed shape of the train. Numerical analyses are conducted on five operational conditions which include the variation of the train speed, case with or without the train stopped in the other track, and case for two trains passing each other inside the station. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation for the cases considered in the present study is found to be satisfactory to various foreign standards.

Mutual Inductance of the Non-Coaxial Coils in Coil Gun

  • Kim, Ki-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.120-123
    • /
    • 1994
  • The purpose of this paper is to describe the mutual inductance between two non-coaxial circular coils in coil gun. As being in many electromagnetic applications, one of them is fixed and the other one is moving and, being not supported, its axis may not coincide with the axis of the fixed coil. This paper presents a method for the calculation of the mutual inductance in case of non-coaxial coupled coils, the characteristics of this inductance and experimental results. For the computation, the complete elliptic integrals formula and mesh matrix technique were introduced. This method enables accurate results from relatively simple procedure and calculation program.

  • PDF