• Title/Summary/Keyword: Mouse embryonic stem cells

Search Result 185, Processing Time 0.027 seconds

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX

  • Kim, Ji Won;Kim, Eun Young;Kim, Sun Young;Byun, Sang Kyung;Lee, Dasom;Oh, Kyoung-Jin;Kim, Won Kon;Han, Baek Soo;Chi, Seung-Wook;Lee, Sang Chul;Bae, Kwang-Hee
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.742-746
    • /
    • 2014
  • The epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is specifically detected in most adenocarcinomas and cancer stem cells. In this study, we performed a Cell systematic evolution of ligands by exponential enrichment (SELEX) experiment to isolate the aptamers against EpCAM. After seven round of Cell SELEX, we identified several aptamer candidates. Among the selected aptamers, EP166 specifically binds to cells expressing EpCAM with an equilibrium dissociation constant (Kd) in a micromolar range. On the other hand, it did not bind to negative control cells. Moreover, EP166 binds to J1ES cells, a mouse embryonic stem cell line. Therefore, the isolated aptamers against EpCAM could be used as a stem cell marker or in other applications in both stem cell and cancer studies.

Production of Chimeric Mice Following Transgenesis of Multipotent Spermatogonial Stem Cells (유전자변형 다분화능 정원줄기세포를 이용한 키메라 생쥐의 생산)

  • Lim, Jung-Eun;Eum, Jin-Hee;Kim, Hyung-Joon;Park, Jae-Kyun;Lee, Hyun-Jung;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.305-312
    • /
    • 2009
  • Multipotent spermatogonial stem cells (mSSCs), derived from uni-potent SSC, are a type of reprogrammed cells with similar characteristics to embryonic stem cells (ESCs). The aim of this study was to evaluate the potential for transgenesis of mSSC derived from outbred mice and the production of transgenic animal by the mSSC-insertion into embryo. mSSCs, established from outbred mice (ICR strain) in the previous study, were maintained and then transfected with a lenti-viral vector expressing green fluorescent protein (GFP), CS-CDF-CG-PRE. Embryonic stem cells (ESCs) were derived from inbred transgenic mice (C57BL/6-Tg (CAG-EGFP)) and were used as an experimental control. Transfected mSSCs were well proliferated in vitro and maintained their characteristics and normal karyotype. Ten to twelve mSSCs and ESCs were collected and inserted into perivitelline space of 8-cell mouse embryos, and then transferred them into uteri of poster mothers after an additional 2-days of culture. Percentage of mSSC-derived offsprings was 4.8% (47/980) and which was lower than those (11.7% (67/572)) of ESC-derived ones (P<0.05). However, even though different genetic background of mSSC and ESC origin, the production efficiency of coat-colored chimeric offspring in mSSC group was not different when compared it with ESC (6.4% (3/47) vs. 7.5% (5/67)). From these results, we confirmed that mSSC derived from outbred mice has a pluripotency and a potential to produce chimeric embryos or mice when reaggregatation with mSSC is performed.

  • PDF

Haploidy of somatic cells in mouse oocyte using somatic cell nuclear transfer

  • Yeonmi Lee;Eunju Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.213-217
    • /
    • 2022
  • Haploidization in somatic cells is the process of reducing the diploid somatic chromosomes to haploid. Several studies have attempted somatic haploidization using oocytes in mice and humans. Some researchers showed partial somatic haploidization, but none observed embryo development. Our study attempted somatic haploidization using the modified somatic nuclear transfer (SCNT) protocol with various combinations of chemicals or proteins in mice. This study induced the proper segregation of somatic homologous chromosomes and full embryo development in vitro. Furthermore, somatic haploid embryos established embryonic stem cells and produced live births. The current review summarizes this recent study on the success of somatic haploidization and provides an overview of other related studies on somatic haploidization.

Establishment and Maintenance of Embryonic Stem-like Cell Lines from In Vitro Produced Bovine Blastocysts (체외수정 유래 소 배반포로부터 유사 배아 줄기 세포의 확립 및 유지)

  • Lee, Yu-Yeon;Kim, Sun-Uk;Kim, Ji-Su;Song, Bong-Seok;Cho, Yoon-Jeong;Park, Jung-Sun;Yu, Dae-Yeul;Jin, Dong-Il;Lee, Kyung-Kwang;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • This study was conducted to examine the establishment of bovine ES-like cells having pluripotency. The hatched blastocysts derived from culture of in vitro fertilized embryos for 10 to 12 days dissociated mechanically into ICM-and trophectoderm-rich clumps using needle, and cultured onto mitotically-inactivated MEF feeder layer. The primary colonies originated from ICM cells were detached mechanically 7 days after seeding and subsequent subculture was conducted at intervals of every 5 to 7 days. Two ES -like cell lines were established and maintained over 40 passages. Self-renewal of the established lines was confirmed by examining the alkaline phosphatase activity, stem cell-specific marker profiles including SSEA isotopes, Oct-4 and STAT3. Moreover, the established cell lines could produce anchorage-independent embryoid bodies (EBs) with gradual decrease of Oct-4 transcript level in time-dependent manner.

Development of In Vitro Culture System for Male Germline Stem Cells in Porcine (돼지 웅성 생식선 줄기세포의 체외배양기법 개발)

  • Kim, Yong-Hee;Kim, Byung-Gak;Lee, Yong-An;Kim, Bang-Jin;Kim, Ki-Jung;Lee, Myeung-Sik;Im, Gi-Sun;Ryu, Buom-Yong
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.171-177
    • /
    • 2009
  • Spermatogonial stem cells(SSCs) only are responsible for the generation of progeny and for the transmission of genetic information to the next generation in male. Other in vitro studies have cultured SSCs for proliferation, differentiation, and genetic modification in mouse and rat. Currently, information regarding in vitro culture of porcine Germline Stem Cell(GSC) such as gonocyte or SSC is limited and is in need of further studies. Therefore, in this study, we report development of a successful culture system for gonocytes of neonatal porcine testes. Testis cells were extracted from $10{\sim}14$-day-old pigs. These cells were harvested using enzymatic digestion, and the harvested cells were purified with combination of percoll, laminin, and gelatin selection techniques. The most effective culture system of porcine gonocytes was established through trial experiments which made a comparison between different feeder cells, medium, serum concentrations, temperatures, and $O_2$ tensions. Taken together, the optimal condition was established using C166 or Mouse Embryonic Fibroblast(MEF) feeder cell, Rat Serum Free Medium(RSFM), 0% serum concentration, $37^{\circ}C$ temperature, and $O_2$ 20% tension. Although we discovered the optimal culture condition for proliferation of porcine gonocytes, the gonocyte colonies ceased to expand after one month. These results suggest inadequate acquirement of ingredients essential for long term culture of porcine GSCs. Consequently, further study should be conducted to establish a successful long-term culture system for porcine GSCs by introducing various growth factors or nutrients.

Analyses of Transcription Factor CP2 Expression during Development and Differentiation

  • Chae, Ji-Hyung;Oh, Eun-Jung;Kim, Chul-Geun
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 1997
  • Transcription factor CP2 was identified initially to bind the promoter region of the murine a-globin gene and its activity was shown to increase 2 to 3 fold during the induced differentiation of murine erythroleukemia (MEL) cells. To get further insight into the role of CP2 during development and differentiation, steady-state levels of CP2 message were monitored by using reverse transcriptase (RT)-PCR and in situ hybridization assays in the cultured MEL cells and differentiating embryonic stem (ES) cells in vitro, and in fetal and adult mouse tissues. The amount of CP2 messages increased 3 to 5 fold during induced differentiation of MEL cells, suggesting that the increment of CP2 activity during induced differentiation of MEL cells is originated from the increase of transcription initiation. On the other hand, CP2 expression is not restricted to the erythroid lineage cells; CP2 expressed ubiquitously from the undifferentiated ES cells to adult tissue cells. CP2 transcript was observed even in the undifferentiated ES cells and the level of expression increased from day 8 of the differentiating embryoid bodies. RT-PCR assay in the total RNAs prepared from several tissues of the adult mouse also showed ubiquitous expression profile, although the levels of expression were variable among tissues. When non-radioactive in situ hybridization assay was performed to the paraffin-sectioned whole body mouse embryos at days 11.5, 13.5, and 16.5 after fertilization, variable amounts of positive signals were also detected in different tissues.

  • PDF

Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation (심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴)

  • Sejin Jeon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Despite several advances in identification of cardiac transcription factors, there are still needs to find new bioactive molecules that promote cardiomyogenesis from stem cells to highly efficient myocardial differentiation. We analyzed Illumina expression microarray data of mouse embryonic stem cells (mESCs)-derived cardiomyocytes. 276 genes were upregulated (≥ 4fold) in mESCs-derived cardiomyocytes compared undifferentiated ESCs. Secreted phosphoprotein 2 (Spp2) is one of candidates and is known to inhibit bone morphogenetic protein 2 (BMP2) signal transduction as a pseudoreceptor for BMP2. However, its function in cardiomyogenesis is unknown. We confirmed that Spp2 expression increased during the differentiation into functional cardiomyocytes using mESCs, TC-1/Kh2 and E14. Interestingly, Spp2 secretion transiently increased 3 days after formation of embryoid bodies (EBs), indicating that the extracellular secretion of Spp2 is involved in the differentiation of ESCs into cardiomyocytes. To characterize Spp2, we performed experiments using the C2C12 mouse myoblast cell line, which has the property of shifting the differentiation pathway from myoblastic to osteoblastic by treatment with BMP2. Similar to the differentiation of ESCs, transcription of Spp2 increased as C2C12 myoblasts differentiated into myotubes. In particular, Spp2 secretion increased dramatically in the early stage of differentiation. Furthermore, treatment with Spp2-Flag recombinant protein promoted the differentiation of C2C12 myoblasts into myotubes. Taken together, we suggest a novel bioactive protein Spp2 that differentiates ESCs into cardiomyocytes. This may be useful for understanding the molecular pathways of cardiomyogenesis and for experimental or clinical promotion of stem cell therapy for ischemic heart diseases.

Identification of Niche Conditions Supporting Short-term Culture of Spermatogonial Stem Cells Derived from Porcine Neonatal Testis

  • Park, Min Hee;Park, Ji Eun;Kim, Min Seong;Lee, Kwon Young;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.29 no.3
    • /
    • pp.221-228
    • /
    • 2014
  • Despite that porcine spermatogonial stem cells (pSSCs) have been regarded as a practical tool for preserving eternally genetic backgrounds derived from pigs with high performance in the economic traits or phenotypes of specific human diseases, there were no reports about precise definition of niche conditions promoting proliferation and maintenance of pSSCs. Accordingly, we tried to determine niche conditions supporting proliferation and maintenance of undifferentiated pSSCs for short-term. For these, undifferentiated pSSCs were progressively cultured in different composition of culture medium, seeding density of pSSCs, type of feeder cells and concentration of growth factors, and then total number of and alkaline phosphatase (AP) activity of pSSCs were investigated at post-6 day culture. As the results, the culture of $4{\times}10^5$ pSSCs on mitotically in activated $2{\times}10^5$ STO cells in the mouse embryonic stem cell culture medium (mESCCM) supplemented with 30 ng/ml glial cell line-derived neurotrophic factor (GDNF) was identified as the best niche condition supporting effectively the short-term maintenance of undifferentiated pSSCs. Moreover, the optimized short-term culture system will be a basis for developing long-term culture system of pSSCs in the following researches.