Production of Chimeric Mice Following Transgenesis of Multipotent Spermatogonial Stem Cells

유전자변형 다분화능 정원줄기세포를 이용한 키메라 생쥐의 생산

  • Lim, Jung-Eun (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Eum, Jin-Hee (Dept. of Biomedical Science, College of Life Science, CHA University) ;
  • Kim, Hyung-Joon (Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University) ;
  • Park, Jae-Kyun (Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University) ;
  • Lee, Hyun-Jung (Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University) ;
  • Lee, Dong-Ryul (Dept. of Biomedical Science, College of Life Science, CHA University)
  • 임정은 (차의과학대학교 의생명과학과) ;
  • 엄진희 (차의과학대학교 의생명과학과) ;
  • 김형준 (차병원 여성의학연구소) ;
  • 박재균 (차병원 여성의학연구소) ;
  • 이현정 (차병원 여성의학연구소) ;
  • 이동률 (차의과학대학교 의생명과학과)
  • Published : 2009.12.31

Abstract

Multipotent spermatogonial stem cells (mSSCs), derived from uni-potent SSC, are a type of reprogrammed cells with similar characteristics to embryonic stem cells (ESCs). The aim of this study was to evaluate the potential for transgenesis of mSSC derived from outbred mice and the production of transgenic animal by the mSSC-insertion into embryo. mSSCs, established from outbred mice (ICR strain) in the previous study, were maintained and then transfected with a lenti-viral vector expressing green fluorescent protein (GFP), CS-CDF-CG-PRE. Embryonic stem cells (ESCs) were derived from inbred transgenic mice (C57BL/6-Tg (CAG-EGFP)) and were used as an experimental control. Transfected mSSCs were well proliferated in vitro and maintained their characteristics and normal karyotype. Ten to twelve mSSCs and ESCs were collected and inserted into perivitelline space of 8-cell mouse embryos, and then transferred them into uteri of poster mothers after an additional 2-days of culture. Percentage of mSSC-derived offsprings was 4.8% (47/980) and which was lower than those (11.7% (67/572)) of ESC-derived ones (P<0.05). However, even though different genetic background of mSSC and ESC origin, the production efficiency of coat-colored chimeric offspring in mSSC group was not different when compared it with ESC (6.4% (3/47) vs. 7.5% (5/67)). From these results, we confirmed that mSSC derived from outbred mice has a pluripotency and a potential to produce chimeric embryos or mice when reaggregatation with mSSC is performed.

단분화성 정원줄기세포의 장기간 체외배양 중에 확립되는 다분화능 정원줄기세포는 배아줄기세포와 유사한 특성을 가져 3배엽성 세포로 체외분화가 가능하며 기형종을 형성할 수 있다. 본 연구에서는 선행 연구를 통해 outbred 생쥐(ICR strain)로부터 확립된 다분화능 정원줄기세포의 형질전환 가능성을 확인하며, 배아 내로 주입하여 유전적 키메라를 형성하는 효율을 배아줄기세포와의 비교를 통하여 검증하고자 하였다. 다분화능 정원줄기세포를 넣은 배아로부터 태어난 산자는 총 47마리(4.8%)가 태어나, 67마리(11.7%)가 태어난 배아줄기세포군에 비해 그 효율이 낮았다(P<0.05). 그러나 산자들 중의 키메라 생쥐의 비율은 다분화능 정원줄기세포 군으로 부터 3마리(6.4%)가 태어나 배아줄기세포 군으로부터 태어난 5마리(7.5%)와 유사하였다(P>0.05). 태어난 유전자변형 생쥐의 장기를 확인한 결과, 췌장, 심장, 뇌, 근육, 위, 피부, 정소에 GFP가 발현되는 것을 확인하였다. 또한 배아의 근육, 위, 뼈 등에서 anti-GFP 항체의 발현을 확인하였다. 이상의 결과를 종합하면 outbred 생쥐로부터 확립된 다분화능 정원줄기세포가 inbred 생쥐로부터 확립된 배아줄기세포와 마찬가지로 키메라 생쥐를 생산할 수 있는 전분화능을 가짐을 확인하였고, 새로운 유전자변형 동물의 생산을 위한 매개체로서의 가능성을 가진 것으로 여겨진다.

Keywords

References

  1. Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209- 6214. https://doi.org/10.1073/pnas.101118898
  2. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199-1203. https://doi.org/10.1038/nature04697
  3. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyushima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001-1012. https://doi.org/10.1016/j.cell.2004.11.011
  4. Kanatsu-Shinohara M, Ikawa M, Takehashi M, Ogonuki N, Miki H, Inoue K, Kazuki Y, Lee J, Toyokuni S, Oshimura M, Ogura A, Shinohara T (2006) Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc Natl Acad Sci USA 103:8018-8023. https://doi.org/10.1073/pnas.0601139103
  5. Kawase E, Suemori H, Takahashi N, Okazaki K, Hashimoto K, Nakatsuji N (1994) Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int J Dev Biol 38:385-390.
  6. Kim HJ, Lee HJ, Lim JJ, Kwak KH, Kim KS, Lee DR (2009) Reprogramming of neonatal out-bred spermatogonial stem cells into a multipotent state using a unique multisteculture system. Mol Cells in revision.
  7. Kirchain SM, Hayward AM, Mkandawire JM, Qi P, Burds AA (2008) Comparison of tetraploid blastocyst microinjection of outbred Crl:CD1 (ICR), hybrid B6D2F1/Tac, and inbred C57BL/6NTac embryos for generation of mice derived from embryonic stem cells. Comp Med 58: 145-150.
  8. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Dore AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25:91-99. https://doi.org/10.1038/nbt1263
  9. Ramirez MA, Fernandez-Gonzalez R, Perez-Crespo M, Pericuesta E, Gutierrez-Adan A (2009) Effect of stem cell activation, culture media of manipulated embryos, and site of embryo transfer in the production of F0 embryonic stem cell mice. Biol Reprod 80:1216-1222. https://doi.org/10.1095/biolreprod.108.075044
  10. Schoonjans L, Kreemers V, Danloy S, Moreadith RW, Laroche Y, Collen D (2003) Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21:90-97. https://doi.org/10.1634/stemcells.21-1-90
  11. Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346-350. https://doi.org/10.1038/nature06129
  12. Suzuki O, Matsuda J, Takano K, Yamamoto Y, Asano T, Naiki M, Kusanagi M (1999) Effect of genetic background on establishment of mouse embryonic stem cells. Exp Anim 48:213-216. https://doi.org/10.1538/expanim.48.213
  13. Takehashi M, Kanatsu-Shinohara M, Miki H, Lee J, Kazuki Y, Inoue K, Ogonuki N, Toyokuni S, Oshimura M, Ogura A, Shinohara T (2007) Production of knockout mice by gene targeting in multipotent germline stem cells. Dev Biol 312:344-352. https://doi.org/10.1016/j.ydbio.2007.09.029
  14. Te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89:5128-5132. https://doi.org/10.1073/pnas.89.11.5128
  15. Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3:209-220. https://doi.org/10.1089/15362300152725936
  16. Ware CB, Siverts LA, Nelson AM, Morton JF, Ladiges WC (2003) Utility of a C57BL/6 ES line versus 129 ES lines for targeted mutations in mice. Transgenic Res 12:743-746. https://doi.org/10.1023/B:TRAG.0000005246.35812.c8