• Title/Summary/Keyword: Motor Shaft

Search Result 365, Processing Time 0.03 seconds

Constant Speed Control of Shaft Generating System Driven by Hydrostatic Transmission Using a PWM Controlled High Speed on/off Valve for Ship Use (고속 전자밸브 PWM제어에 의한 유압구동식 선박용 축발전장치의 정속제어)

  • 정용길;신민수;이일영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1374-1381
    • /
    • 1994
  • This study suggests a new type shaft generating system driven by hydrostatic transmission suitable for small size vessels. In this system, the hydraulic motor speed is controlled by displacement adjustment using a 3-way high speed on/off valve. The 3-way high speed valve is operated by PWM control signal. In this study, a digital robust servo control algorithm is applied to the controller design of the system. By experiments and numerical computations, the frequency variation characteristics of the generating system under various disturbances are investigated. Conclusively, it is said that the shaft generating system proposed in this study shows excellent control performances.

Characteristics of the Sealing Pressure of a Magnetic Fluid Shaft Seal for Intra-Cardiac Axial Flow Blood Pumps (심장 내 이식형 축류 혈액 펌프용 자성 유체 축봉의 내압 특성)

  • KIM, Dong-Wook;Mitamura , Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.477-482
    • /
    • 2002
  • One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments confirmed these advantages. The seal body was composed of a Nd-Fe-B magnet and two pole pieces; the seal was formed by injecting magnetic fluid into the gap (50${\mu}m$) between the pole pieces and the motor shaft. To contain the ferro-fluid in the seal and to minimize the possibility of magnetic fluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 31kPa with magnetic fluid LS-40 (saturated magnetization, 24.3 KA/m) at a motor speed of 10,000 rpm and 53kPa under static conditions(0mmHg). The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intra-cardiac axial flow blood pump.

Experimental study on the thermal characteristics according to the preload and cooling for the high speed spindle with oil mist lubrication (오일미스트윤활 고속주축의 예압과 냉각에 따른 열특성의 실험적 고찰)

  • 김수태;최대봉;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.428-432
    • /
    • 2004
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the test spindle with the oil mist lubrication and high frequency motor. Bearings and motor e main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting preload and hollow haft cooling are very effective to minimize the thermal effect by the motor and ball bearings.

  • PDF

Structural Re-design of Seawater Pump Impeller Shaft (해수펌프 임펠러 샤프트의 구조 재설계)

  • Cho, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.326-332
    • /
    • 2010
  • Critical response of seawater pump impeller shaft structure to various exciting loads is a fundamental factor in re-designing of the structure after its functional failure. In this paper, a typical case of the shaft structure's failure is investigated for re-designing purposes. Failure causes of interest are excessive bending moment, fatigue loads and dynamic resonance due to relevant motor rotation and unbalancing of the rotation loads. Static analyses of shaft structure under the conditions of concerned loads are carried out, followed by a dynamic investigation of the effects of resonance between the shaft and the motor on the structure. The relevant structural analyses are carried out using the Finite Element Methods combined with ANSYS code. Based on these, the primary cause for the shaft's structural failure is obtained. It is found that the change of the bending stiffness of the shaft is the primary concern in the re-designing process. A guideline for the re-design process of the seawater pump shaft structure is established, and a re-design scheme of the structure is proposed.

A Study on the Characteristics of Behavior of Tripod Mechanism in Swashplate Type Piston Motor (사판식 피스톤 모터의 트라이포드 기구의 거동 특성 연구)

  • Ham, Y.B.;Ha, J.H.;Park, K.M.;Kim, S.D.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.36-41
    • /
    • 2002
  • A swashplate type piston motor with a tripod joints is introduced to improve compactness and starting torque in conventional types of motor. If the driving torque of motor shaft is transmitted by utilizing the mechanism, its friction torque loss would be drastically reduced and mechanical efficiency would be improved because the lateral force on the piston of the rod type motor with tripod joints mechanism is relatively smaller than that of the conventional plunger type motor. In particular, kinematics analysis for the mechanism are done as a preliminary study to investigate the feasibility of the mechanism in the axial piston motor. General formulas are derived from the displacement and velocity analysis of the mechanism, showing relationships between output shaft and shoe holder motion. A series of numerical calculations are carried out for a medium size motor with 160cc/rev using the formulas and their graphical plots are shown as well.

  • PDF

New Vibration Suppression Control of 2-Mass System using $H_{\infty}$ Filter (2관성계의 $H_{\infty}$ 필터를 이용한 새로운 전동억제제어)

  • 김진수;유상봉
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.339-342
    • /
    • 2002
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem H$_{\infty}$ controller was designed. In this paper, H$_{\infty}$ control of 2-mass system using H$_{\infty}$ filter for compensating shaft torque is proposed. Pole-zero maps show the validity of proposed controller.

  • PDF

Unity Power Factor Control of Sensorless Switched Reluctance Motor

  • Jeyakumar, A. Ebenezer;Shanmuganandan, K.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1147-1152
    • /
    • 2004
  • Switched Reluctance Motors have an inexpensive, intrinsic simplicity and low cost that makes them well suited to home appliance and office applications. However the motor suffering with necessity of shaft position sensor, lead to non-linearity of operations. Further, the involvement of static converters deteriorates the operational power factor. Implementation of a sensorless algorithm, can remove the need of position sensors. Also, the drive includes a compact power factor control in the input stage by implementing Zero Current Switching Quasi-Resonant Boost Technology. This paper presented, aims at optimized low line current distortion, high power factor, low cost and a shaft position sensorless Switched Reluctance Motor drive.

  • PDF

I-PD Controller Design of Motor Speed Control in a Two-Mass Motor Drive system (2관성 모터 시스템의 속도제어를 위한 I-PD제어기 설계)

  • Shim, Yong-Hun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.42-45
    • /
    • 2002
  • In the two-mass motor drive system driving a load through a flexible shaft or transmission system, a shaft torsional vibration is often generated. The overshoot of the motor drive system easily causes vibration. In this case I-PD controller has been generally used in speed control, because of the simplicity of structure. This paper using an analytical pole assignment design, proposes the overshoot formulas, and the settling time formula. The objective of this paper is to provide a design method of I-PD controller by using overshoot formulas, and settling time formula. The simulation results show that we can design the controller with desired overshoot and settling time.

  • PDF

Rotation Speed and Torque Characteristics of Ultrasonic Motor by Phase difference (위상차에 의한 초음파 모터의 속도와 토오크 특성)

  • Kim, Dong-Ok;Ko, Nack-Yon;Choi, Han-Su;Cha, In-Su;Woo, Su-Yong;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.328-330
    • /
    • 1994
  • The Ultrasonic motor(USM) has many good characteristics such as high torque at low speed range, large holding torque based upon frictional force, high speed response, flexible free ferns, compactness in size, low magnetic noise and silentness in motion. Because of having low speed rotation, USM is good as an actuator of a small size direct drive (DD) manipulator. The acturators for the DD manipulators must have good controllability on the speed and torque from zero to maximum value continuously. New method was developed for speed and torque control by the phase difference control of the two-phase driving signals of the motor. Then rule adjustable compliant and dumped motion was realized on the output shaft of the motor by PD control of the output shaft angle.

  • PDF