• 제목/요약/키워드: Motor Learning

검색결과 433건 처리시간 0.022초

적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제56권2호
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

유도전동기 드라이브의 강인성 제어를 위한 AFLC 개발 (AFLC Development for Robust Control of Induction Dirve)

  • 김종관;최정식;고재섭;이정호;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.727-728
    • /
    • 2006
  • This paper is proposed robust control based on the vector controlled induction motor drive with adaptive fuzzy learning control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed estimation of speed of induction motor using ANN Controller. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of SynRM Drive using Multi-AFLC)

  • 장미금;고재섭;최정식;강성준;백정우;김순영;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.359-362
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

Nonlinear Backstepping Control of SynRM Drive Systems Using Reformed Recurrent Hermite Polynomial Neural Networks with Adaptive Law and Error Estimated Law

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1380-1397
    • /
    • 2018
  • The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better control performance for controlling SynRM drive systems.

직류전동기의 속도제어를 위한 신경회로망의 새로운 적용 (New application of Neural Network for DC motor speed control)

  • 박왈서
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.63-67
    • /
    • 2004
  • 신경회로망은 많은 제어분야에서 이용되고 있다. 제어기로 사용될 경우에, 신경망 제어기는 입출력 패턴에 의하여 학습을 하게 된다. 그러나 제어분야의 대부분의 경우에 있어서 신경망 제어기의 입출력 패턴을 구할 수 없다. 이러한 문제를 해결하기 위한 한 방법으로, 본 논문에서는 신경망 출력노드에 제어 대상체를 가져오는 새로운 제어 방법을 시도하였다. 이와 같은 새로운 제어 방법의 적용으로 신경회로망제어기의 입출력 데이터를 얻는 문제를 해결할 수 있었다. 제의된 제어 알고리즘의 효과는 직류 서보 전동기의 모의실험에 의하여 확인하였다.

신경망이득 자동조절기를 이용한 유도모터 속도 제어 (The Speed Control of Induction Motor using Automatic Neural Network Gain Regulator)

  • 박왈서;김용욱;이성수
    • 조명전기설비학회논문지
    • /
    • 제20권7호
    • /
    • pp.53-57
    • /
    • 2006
  • PID 제어기는 산업자동화 설비에 널리 쓰이고 있다. 하지만 시스템 특성이 간헐 또는 연속적으로 변화할 때에 정밀제어를 위한 새로운 매개변수 결정이 쉽지 않다. 이를 해결하기 위한 방법으로 본 논문에서는 PID 제어기와 같은 기능을 갖는 신경망이득 자동조절기를 제안 하였다. 시스템의 적절한 궤환제어 이득은 델타 학습규칙에 의해서 결정된다. 제안된 신경망이득 자동조절기의 기능은 유도 전동기의 속도제어 실험에 의해 확인하였다.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

신경망이론을 이용한 PID제어기의 자기동조에 관한 연구 (A Study on Self-tunning of PID Controller using Neural Network Theory)

  • 전기영;함년근;성낙규;이승환;이훈구;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2610-2612
    • /
    • 1999
  • In controlling vector of induction motor, PID controller is required much time as the expert should control manually a gain of controller according to plant or a change of circumstances. Accordingly, this paper has gotten a gain of PID controller used neural network by self-funning method in order to settle above problem. The neural network can describe an input/output features in spite of non-linear system which is hard to get mathematical model by controlling the strength of connection by learning. It has a strong character against a distortion and noise of input information, and is suitable modeling of diver-variable system which is composed of several input/output. This paper has represented the self-tunning method for gain of PID controller used neural network when using PID controller to control speed of induction motor, and has checked strong characters against distortion and noise of input information through simulation.

  • PDF

LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive with LM-FNN Controller)

  • 남수명;고재섭;최정식;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.566-569
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using artificial intelligent(AI) controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using learning mechanism fuzzy neural network(LM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also. this paper is proposed the experimental results to verify the effectiveness of AI controller.

  • PDF