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Abstract 

 

The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex 
construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The 
nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for 
controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in 
a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed 
to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. 
Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an 
adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in 
order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network 
with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. 
Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better 
control performance for controlling SynRM drive systems. 
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I. INTRODUCTION 

The synchronous reluctance motor (SynRM) has long been 
regarded as inferior to other type of AC motors. The SynRM 
has been mainly used for variable-frequency applications in 
pumps and fiber spinning machines [1], [2]. However, the 
SynRM has many advantages. When compared to the direct 
current motor (DCM), there are no slip rings or commutators 
[2]. When compared to the permanent magnet synchronous 
motor (PMSM), there are no permanent magnets [2]. When 
compared to other servomotors, the SynRMs have a higher 
efficiency and a lower cost through optimal design methods 

[3]-[5]. Owing to advances in motor design and power 
electronics, many researchers have conducted research on the 
drive and control of SynRMs [6]-[10]. Lipo et al. [6] studied 
the vector control of a SynRM including saturation and core 
loss. Betz et al. [7] introduced four kinds of torque control 
methods for SynRMs. Lin [8] proposed an adaptive recurrent 
fuzzy neural network control system t controlling SynRM 
servo drives. Wei et al. [9] evolved an online tuning adaptive 
controller design for SynRM drive systems according to the 
least-mean-square algorithm. Chiang et al. [10] developed a 
reference adaptive Hermite fuzzy neural network controller 
for the SynRM to estimate the lumped uncertainty of the 
system. However, these adaptive control methods were 
proposed for controlling SynRM drive systems to the improve 
control performance. 

The recursive backstepping design methodology was 
originally introduced in adaptive control theory to systematically 
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construct the feedback control law, the parameter adaptation 
law and the associated Lyapunov function for a class of 
nonlinear systems satisfying certain structured properties. 
The idea of a backstepping design is to recursively select 
some appropriate functions of state variables as pseudo- 
control inputs for lower dimension subsystems of the overall 
system. Each backstepping stage results in a new pseudo- 
control design, which is expressed in terms of the pseudo 
control designs from the preceding design stages. When the 
procedure terminates, a feedback design for the true control 
input results, which achieves the original design objective by 
virtue of a final Lyapunov function formed by summing up 
the Lyapunov functions associated with each of the individual 
design stages [11], [12]. Some of these methods use off-line 
data collected from the machine during static conditions, 
which change during motor operation due to changes in the 
motor parameters. Some methods use a linear model of the 
machine, which may not be suitable for high-performance 
applications under the occurrence of uncertainties. 

In recent years, intelligent control including fuzzy logic 
control and neural network control has been widely applied to 
drive motors [13]-[16]. Amer et al. [13] presented a comparison 
of different intelligent control techniques for a PM dc motor. 
Lin [14] proposed backstepping control of LSM drive 
systems using an adaptive modified recurrent Laguerre 
OPNNUO. Payam et al. [15] developed a robust DTC control 
of doubly-fed induction machines based on input-output 
feedback linearization using recurrent neural networks. Lin 
[16] proposed hybrid recurrent wavelet neural network 
control of a PMSM servo-drive system for electric scooters. 
Due to their good learning, neural networks [14]-[16] with a 
parallel structure possess a better ability to approximate the 
modeling of nonlinear systems. However, they are 
computationally expensive and yield a large number of 
iterations for training. To reduce the computational complexity, 
a functional-type neural network [17]-[19] with a lot less 
computational cost has been introduced. It is shown that the 
performance of the functional-link neural network is similar 
to that of a neural network but with a faster convergence and 
less computational complexity. Additionally, Ma et al. [20], 
[21] proposed a computationally efficient Hermite polynomial 
neural network. Constructing Hermite polynomial expansions 
were adopted by using structure and function levels 
adaptation methodologies. This Hermite polynomial neural 
network can effectively map the underlying input-output map. 
Rigatos et al. [22] proposed a Hermite polynomial neural 
network that can be used in the nonparametric estimation. 
Siniscalchi et al. [23] proposed a Hermite polynomial neural 
network for application in connectionist speech recognition 
systems with speaker adaptation. However, these Hermite 
polynomial neural networks have also been applied for 
system modelling and image processing. Moreover, the 
weight updates of these neural networks utilizes the internal 

information of the neural networks and senses the function 
approximation in the training procedure. Due to greater 
precision approximations in modeling nonlinear systems and 
dynamic control [17]-[19], many researchers have been 
fascinated with recurrent neural network studies. These 
recurrent neural networks are able to carry out the 
identification and control of complex dynamics system. 
However, they also have higher computational costs. The 
proposed reformed recurrent Hermite polynomial neural 
network has better dynamic mapping performance and less 
computational time in the presence of uncertainties. This 
paper presents a nonlinear backstepping control system using 
a reformed recurrent Hermite polynomial neural network with 
an adaptive law and an error estimated law for controlling 
SynRM drive systems to enhance robustness. 

This paper is organized as follows. The system structure of 
the SynRM drive system is reviewed in Section II. The 
design method of a nonlinear backstepping control system is 
presented in Section III. Experimental results and comparative 
studies for various control methods are illustrated in Section 
IV. Some conclusions are given in Section V. 

 

II. CONFIGURATION OF A SYNRM DRIVE SYSTEM 

The machine model of a SynRM in the synchronously 
rotating reference frame can be offered in the following 
descriptions [6]-[8]: 

DsQQsQ iru               (1) 

QsDDsD iru                (2) 

and: 

QQQ iL                    (3) 

DDD iL                   (4) 

2/rs P                    (5) 

where Du and Qu are the D axis and Q axis stator voltages, 

Di and Qi  are the D axis and Q axis stator currents, DL  

and QL are the D axis and Q axis inductances, D  and Q  

are D axis and Q axis stator flux linkages, sr  is the stator 

resistance, s  is the electrical angular velocity, r  is the 

mechanical angular velocity of the rotor, and P is the number 
of poles. 

The electromagnetic torque can be expressed as: 

  4/][3 DQQDe iiLLPT             (6) 

The equation of the motor dynamics is: 

rrle JBTT                  (7) 

where eT  is the electromagnetic torque, lT  stands for the 

load torque, B represents the viscous frictional coefficient,  
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Fig. 1. Configuration of a DSP field-oriented controlled SynRM 
drive system. 

 
and J is the moment of inertia. The basic principle in 
controlling a SynRM drive is based on field orientation with a 
constant current in the d axis. Therefore, the electromagnetic 
torque eT is proportional to Qi , which is determined by the 

closed-loop control. Since the generated torque is linearly 
proportional to the q axis current as the d axis rotor flux is 
constant in (6), the torque per ampere can be achieved. The 
configuration of a digital signal processor (DSP) field- 
oriented controlled SynRM drive system is shown in Fig. 1. 

The system is constituted by the following parts: a SynRM 
(loaded with a magnet-force brake machine), a hysteresis- 
band comparison current-controlled pulse-width-modulation 
(PWM) voltage source inverter with three sets of insulated- 
gate-bipolar-transistor (IGBT) power modules, a field- 
orientation mechanism including a coordinate translator and a 

ss  sin/cos  generator where 2/rs P   is the rotating 

angle of the rotor flux, a speed control loop and a position 
control loop. For the position control system, the 
magnet-force brake machine is operated to provide a constant 
disturbance torque. A mechanism with an adjustable inertia is 
also coupled to the rotor of the SynRM. 

A SynRM drive system with field-oriented control [6-8] 
can be simplified as the block diagram shown in Fig. 2, 
where: 

*
Qfe ikT                    (8) 

 DQDf iLL
P

k )(
4

3              (9) 

where fk  is the torque constant, *
Qi  is the torque current 

command, and *
Di  is the field current command to be a 

constant in the field-oriented control. Moreover, r  and  

 
Fig. 2. Simplified block diagram of a field-oriented controlled 
SynRM drive system. 

 

r  are the rotor position and speed. All of the parameters 

of the SynRM are given as: 231004.1 NmsJ  , 

radNmsB /1018.6 3 , ANmk f /6527.0 ,  21.1sr , 

mHLQ 25.32 , and mHLD 82.124 . The methods of 

the electrical parameter identification were used by the open 
circuit saturation curve, the short circuit current curve, etc. 
The curve-fitting technique based on the step response of 
the rotor position is applied to find a model of the drive 
system under the nominal condition, i.e., Nm 0lT without 

parameter variations. For the convenience of the controller 
design, the position and speed signals in the control loop are 
set to 1 V=50 rad and 1 V=50 rad/sec, respectively. 

 

III. CONTROL SYSTEM DESIGN 

The uncertainties of an actual SynRM drive system 
including parameter variations and external load disturbances 
with nonlinear and time-varying properties are hard to frame 
in accurate models. The motor dynamics equation (7) 
including parameter variations and external load disturbances 
with nonlinear and time-varying properties can be presented 
as [13]: 

1111111111 vgqfThvgqfq l       (10) 

where rr rq    11  is the rotor speed of the SynRM , 

rr 1  is the rotor position of the SynRM, JBf 1 , 

01  Jkg f , Jh 11  , 1f and 1g denote the 

uncertainties introduced by the system parameters J  and 

B , and 1v  is the control input of the SynRM drive system, 

i.e., the torque current Qi . To simplify the equation, (10) is 

rewritten as [13]: 

lzvgqfq  11111            (11) 

where ll Thgvqfz 1111   is the lumped uncertainty. 

The aim of the control system design is to achieve better 
position tracking performance under nonlinear uncertainty 
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disturbances for the SynRM drive system. The position 

tracking error is 1
*

1 rqd dr   , where )(* tqd  

is the reference trajectory. The derivative of 1d  is 

1
*

1 qqd dr    . The stabilizing function is defined as 

22111 dkdkqc d   ,where 1k  and 2k  are both positive 

constants.   ddd )(12  is the integral function to ensure 

convergence of the tracking error. The virtual tracking error 
is defined as 113 cqd  . The first Lyapunov function can 

be opted as 2/2
11 dY  .  Substituting 1

*
1 qqd dr    , 

311 dqc   and 22111 dkdkqc d    into the derivative of 

1Y  [13] yields: 

)()( 31111111 dcqdqqdddY dd    

31212
2

11 ddddkdk             (12) 

Substituting (10) and the derivative of 1c  into the 

derivative of 3d  [13] yields: 

113 cqd   )()( 22111111 dkdkqzvgqf dl
   (13) 

The second Lyapunov function can be opted as [13]: 

2/2/ 2
3

2
2212 ddkYY          (14) 

A. Nonlinear Backstepping Control System Using an 
Upper Bound with a Switching Function 

For designing the proposed nonlinear backstepping control 
system using an upper bound with a switching function, it is 
assumed that the lumped uncertainty lz  is bounded, i.e., 

ll zz  .  Substituting 3d , (12), (13),   ddd )(12  and 

the derivative of the integral function into the derivative of 
(14) yields: 

3322212 ddddkYY    

22231212
2

11 ddkddddkdk   

)}(]{[ 221111113 dkdkqzvgqfd dl
 

)}(]{[ 22111111331
2

11 dkdkqzvgqfddddk dl
  (15) 

Then the nonlinear backstepping control using an upper 
bound with a switching function Qiv 1  can be designed as: 

])sgn([ 3331112211
1

11 dkdzqfddkdkqgv ld     (16) 

By using the lumped uncertainty bound and substituting 
(16) into (15), then (15) can be presented as: 

ll zdzddkdkddY 33
2

33
2

11212 ),(   

02
33

2
11  dkdk              (17) 

Defining the following function: 
2

33
2

11)( dkdkt              (18) 

 

Fig. 3. Block diagram of a nonlinear backstepping control system 
using am upper bound with a switching function. 

 

Using (17) and the integral (18) yields: 

 t tdtdYddYd0 312312 ))(,)(((0)),(0)()( 
  

(19) 

Since (0)),(0)( 312 ddY  is bounded, and ))(,)(( 312 tdtdY  is 

non-increasing and bounded,  


t

t
d0 )(lim  . Moreover, 

 t  is bounded, and  t  is uniformly continuous [24], 

[25]. By using Barbalat’s lemma [24], [25], it can be shown 

that 0)(lim 


t
t

 . That is 1d and 3d  converge to zero 

when t . In addition, d
t

qtq 


)(lim 1  and d
t

qr 


1lim . 

As a result, the stability of the nonlinear backstepping control 
system using an upper bound with a switching function, as 
shown in Fig. 3, can be guaranteed. 

B. Nonlinear Backstepping Control System Using an 
Adaptive Law 

The proposed nonlinear backstepping control system using 
an upper bound with a switching function can perform well 
under general situations. However, when the inertia of the 
counterweight is varying, this method cannot achieve 

satisfactory performance. Since the real value of lz  cannot 

be measured precisely, it is replaced by use of the estimated 
value lẑ .Therefore, the estimation error can be defined as: 

lll ẑzz~               (20) 

The third Lyapunov function can be selected as: 

)2/(~
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2
23 lzYY            (21) 
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Fig. 4. Block diagram of a nonlinear backstepping control system 
using an adaptive law. 

 

12123 /ˆ~/~~  llll zzYzzYY       

22231212
2

11 ddkddddkdk    

1221111113 /ˆ~)}(]{[ lldl zzdkdkqzvgqfd     (22) 

Then the nonlinear backstepping control using an adaptive 
law Qivv  21  can be designed as: 

]ˆ[ 331112211
1

121 dkzqfddkdkqgvv ld        (23) 

Taking (23) into (22), then (23) can be presented as: 
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2

33
2

11

12123

/ˆ~ˆ

/ˆ~/~~


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llll
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2

33
2

11 /ˆ~~ lll zzzddkdk            (24) 

The adaptive law for lz̂  i s  designed as follows: 

31ˆ dzl                     (25) 

Taking (25) into (24), then (24) can be rewritten as 
follows: 

0),( 2
33

2
11213  dkdkddY         (26) 

By using (26), the integral of (18), the bounded and 
uniformly continuous conditions, and Barbalat’s lemma [24], 

[25], it can be shown that 0)(lim 


t
t

 . That is, 1d and 3d  

converge to zero when t . Moreover, d
t

qtq 


)(lim 1  and 

d
t

qr 


1lim . As a result, the stability of the nonlinear 

backstepping control using an adaptive law, as shown in Fig. 
4, can be guaranteed. 

 

Fig. 5. Architecture of the proposed three-layer reformed recurrent 
Hermite polynomial neural network. 

 

C. Nonlinear Backstepping Control System Using a 
Reformed Recurrent Hermite Polynomial Neural 
Network with an Adaptive Law and an Error 
Estimated Law 

Because lumped uncertainty lz  is unknown in practical 

applications, it is difficult to determine the upper bound lz . 

Therefore, it will be observed by an adaptive uncertainty 
observer and assumed to be constant during the observation. 
The above assumption is valid in the practical digital 
processing of the observer since the sampling period of the 
observer is short enough when compared with the variation of 

lz . A reformed recurrent Hermite polynomial neural 

network is proposed to adapt the value of the lumped 
uncertainty lz . The architecture of the proposed three-layer 

reformed recurrent Hermite polynomial neural network is 
depicted in Fig. 5. It is composed of an input layer (the i 
layer), a hidden layer (the j layer) and an output layer (the k 
layer). The activation functions and signal actions of the 
nodes in each layer of the reformed recurrent Hermite 
polynomial neural network are described as follows: 

 
Layer 1: Input Layer 

Each node i in this layer is indicated by  , which 

multiplies them by each other or between each other for input 
signals. Then the outputs signals are the result of the product. 
The input and the output for all of the nodes i in this layer are 
expressed as: 

),1()()( 3111  NouNaNnd kiki
k

i  
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       (27) 
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The first input signal 1
1
1 da   is the tracking error 

between the desired rotor position *  and the actual rotor 

position r . The second input signal 1
1

1
1
2 Δ)1( dzda    is 

the tracking error increment. N denotes the number of 

iterations. The connecting weights 1
iku  are the recurrent 

weights between the output layer and the input layer. 1
io  is 

the output value from the input layer of the reformed 
recurrent Hermite polynomial neural network. 3

ko  is the 

output value from the output layer of the reformed recurrent 
Hermite polynomial neural network. 

 
Layer 2: Hidden Layer 

The single node jth in this layer is labeled as  . The net 

input and the net output for node jth of the hidden layer are 
expressed as: 

),1()()(
2

1

212  


NoNoNnd
i

jij   

)1(,,2,1,0)),(())(()( 2222  mjNndHNndlNo jjjjj 
    (28) 

where  , which is selected between 0 and 1, is the 

self-feedback gain of the hidden layer. The Hermite 
polynomials [20-23] )( xH n  are the arguments of the 

polynomials with 11  x , and n is the order of expansion. 

m is the number of nodes. The zero, first and second order 
Hermite polynomials are given by 1)(0 xH , xxH 2)(1   

and 24)( 2
2  xxH ,  respectively. Higher order Hermite 

polynomials may be generated by the recursive formula 

)(2)(2)( 11 xnHxxHxH nnn   . 

 
Layer 3: Output Layer 
The node kth in this layer is labeled as  . It is the 

summation of all of the input signals. The net input and the 
net output for node kth in this layer can be expressed as: 

,)()(
1

0

223 




m

j
jkjk NouNnd  

1),())(()( 3333  kNndNndlNo kkkk        (29) 

where 2
kju  

is the connective weight between the hidden 

layer and the output layer, 3
kl  is the activation function that is 

selected as a linear function, and 1
il  and 3

kl  are the 

activation function which is selected as a linear function. 

)(2 No j
 represents the jth input to the node of the output 

layer. The output value )(3 Nok  of the reformed recurrent 

Hermite polynomial neural network can be indicated as: 

 T
lk zNo  )(ˆ)(3

            
(30) 

where  Tmuuu 2
1,1

2
11

2
01   is a collection of the adjustable 

parameters of the reformed recurrent Hermite polynomial 

neural network. )()( 23 NoNa jj   represents the jth input to 

the node of the output layer.  Tmaaa 3
1

3
1

3
0   , 

where 2
jo  is determined by the selected Hermite 

polynomials and 10 2  jo . 

The minimum reconstructed error e  can be defined as 

follows: 

 T
lll zzze )()( **              (31) 

where *  is the optimal weight vector that achieves the 
minimum reconstructed error, and the absolute value of e  

is assumed to be less than a small positive constant e  , i.e., 

ee  . To develop the adaptive law of the reformed recurrent 

Hermite polynomial neural network and an error estimated 
law, a Lyapunov candidate is chosen as: 

)2/()()()2/()ˆ( 1
**2

23    TeeYY    (32) 

where   and 1 are positive constants, and ê  is the 

estimated value of the minimum reconstructed error e . The 

estimation value ê  of the reconstructed error e  is to 

compensate the observed error induced by the reformed 
recurrent Hermite polynomial neural network uncertainty 
observer and to guarantee the stable characteristic of the 
whole control system. Take the derivative of 3Y as :  

]})({[

/)(/ˆ)ˆ(

11311322231212
2

11

1
*

24

l

T

zvgdcfdddkddddkdk

eeeYY







    

1
*

22113 /)(/ˆ)ˆ()}{(    T
d eeedkdkqd   (33) 

According to (33), an adaptive laws for  and an error 

estimated law e̂  are designed as follows: 

 31 d                     (34) 

3ˆ de                      (35) 

Then the nonlinear backstepping control using the 
reformed recurrent Hermite polynomial neural network with 

an adaptive law and an error estimated law Qivv  31  is 

proposed as follows: 

]ˆˆ[ 331112211
1

131 dkzeqfddkdkqgvv ld     (36) 

By substituting (36) into (33) and using (31), then (33) can 
be rewritten as: 

1
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Fig. 6. Block diagram of a nonlinear backstepping control system 
using the reformed recurrent Hermite polynomial neural network 
with an adaptive law and an error estimated law. 

 

By substituting (34) and (35) into (37), then (37) can be 
rewritten as follows: 

0),( 2
33

2
11214  dkdkddY       (38) 

By using (38), the integral of (18), the bounded and 
uniformly continuous conditions, and Barbalat’s lemma [24], 
[25], it can be shown that 0)(lim 


t

t
 . That is 1d and 3d  

converge to zero when t . Moreover, d
t

qtq 


)(lim 1  and 

d
t

qr 


1lim . As a result, the stability of the nonlinear 

backstepping control using the reformed recurrent Hermite 
polynomial neural network with an adaptive law and an error 
estimated law, as shown in Fig. 6, can be guaranteed. On the 
other hand, guaranteed convergence of the tracking error to 
zero does not imply convergence of the estimated value of the 
lumped uncertainty to its real values. The persistent 
excitation condition [25] should be satisfied for the estimated 
value to converge to its theoretic value. 

D. On-Line Training Algorithm of the Reformed Recurrent 
Hermite Polynomial Neural Network 

In order to describe the on-line training algorithm of the 
reformed recurrent Hermite polynomial neural network, a 
cost function is defined as [26], [27]: 

2/2
31 dX      

              (39) 

The adaptive law of the connective weight using the 
gradient descent method can be represented as: 

 2
3
1
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X
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
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


         (40) 

The above Jacobian term of the controlled system can be 
rewritten as 

3
3

1 doX k  . The recurrent weight 1
iku  

from the Jacobian term of the controlled system is updated as: 
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


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
      (41) 

E. Two Optimal Learning Rate Derivations and a 
Convergence Analysis of the Reformed Recurrent 
Hermite Polynomial Neural Network 

Two optimal learning rates are derived to assure the 
convergence of the output tracking error. In addition, a 
convergence analysis is provided in the following two 
theorems. 

Theorem 1: Assume that 1  is the learning rate of the 

connective weight between the hidden layer and the output 
layer in the reformed recurrent Hermite polynomial neural 
network. Meanwhile, let maxR1  be defined as 

 NRmaxR Nmax 11  , where   23
1 kjk uoNR   and   is 

the Euclidean norm in n . In addition, 1  is chosen as 

[26], [27]: 
2

max11 )/(20 R                (42) 

The convergence of the output tracking error is guaranteed. 
Furthermore, the optimal learning rate, which achieves fast 
convergence, can be obtained as: 

2
max1

*
1 )/[(1 R                 (43) 

Proof: Since: 

  2
2

3

1 j
kj

k o
u

o
NR 


                 (44) 

A Lyapunov function can be selected as: 

   NdNY 2
35 2

1
                  (45) 

The increment in the Lyapunov function can be depicted 
as: 

          NdNdNYNYNY 2
3

2
3555 1

2

1
1Δ            (46) 

Then the error difference can be represented by: 
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

       (47)  

where )(Δ 3 Nd  is the output error increment, and 2Δ kju  

represents increment of the weight. By using (39), (40) and 
(44), then (47) can be obtained as: 
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lẑ

1

Ω

Two
Optimal  
Learning 
Rate

*
2

*
1 ,

2

Nonlinear  Backstepping Control System Using Reformed Recurrent Hermite
Polynomial Neural Network with Adaptive Law and Error Estimated Law

Adaptive
Law 

Error 
Estimated

Law



Nonlinear Backstepping Control of SynRM Drive Systems Using …                       1387 
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Thereby: 

  
           NRNRNddNdNd T

11
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33133 /11   
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3313 /1      (50) 

By using (46), (47), (48), (49) and (50), then  NY4Δ  can 

be rewritten as: 
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If 1  is chosen as })](/[)/{(20 2
33

2
max11 NddR  , 

the Lyapunov stability of   05 NY  and 0Δ 5 Y  is 

guaranteed. Then the output tracking error converges to zero 
as t . This completes the proof of the theorem. 

Furthermore, the optimal learning rate, which achieves fast 
convergence, corresponds to [26], [27]: 

02})](/[){(2 2
33

2
max1

*
1 NddR           (52) 

i.e.: 

2
max1

2
33

2
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*
1 )/(1})](/[)/{(1 RNddR           (53) 

which comes from the derivative of (51) with respect to 1  

and is equal to zero. This shows interesting results for the 
optimal learning rate which can be on-line tuned at each 
instant. 

Theorem 2: Assume that 2  is the learning rate of the 

recurrent weight between the output layer and the input layer 
in the reformed recurrent Hermite polynomial neural network. 

Meanwhile, let max2R  be defined as  NRmaxR N 2max2  , 

where   13
2 ikk uoNR   and   is the Euclidean norm in 

n . If 2  is chosen as [26], [27]: 

2
max22 )/(20 R               (54) 

Then the convergence of the output tracking error is 
guaranteed. Furthermore, the optimal learning rate which 
achieves the fast convergence can be obtained as: 

2
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*
2 )/(1 R                (55) 

Proof: Since: 
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The Lyapunov function can be selected as (45) and the 
increment in the Lyapunov function can be depicted as (46). 

Then the error difference can be depicted as: 
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where 1Δ iku  represents the increment of the weight. By 

using (39), (41) and (56), then (57) can be depicted as: 
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Thereby: 
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By using (46), (57), (58), (59) and (60), the  NY 5Δ  can 

be rewritten as: 
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If 2  is chosen as })](/[)/{(20 2
33

2
max22 NddR  , 

then the Lyapunov stability of   05 NY  and 0Δ 5 Y  is 

guaranteed. Therefore, the output tracking error converges to 
zero as t . This completes the proof of the theorem. 

Moreover, the optimal learning rate, which achieves a fast 
convergence, corresponds to [26], [27]: 

02})](/[){(2 2
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2
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*
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i.e.: 
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2
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2
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*
2 RNddR     (63) 

which comes from the derivative of (61) with respect to 2  

and is equal to zero. This shows interesting results for the 
optimal learning rate, which can be on-line tuned at each 
instant. 

In summary, the online tuning algorithm of the reformed 
recurrent Hermite polynomial neural network is based on 
adaptive laws (40) and (41) for the connective weight 
adjustment and the recurrent weights adjustment with the two 
optimal learning rates in (43) and (55), respectively. 
Moreover, the reformed recurrent Hermite polynomial neural 
network weight estimation errors are fundamentally bounded 
[28]. In addition, the control signal is bounded. 
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Fig. 7. Photo of the experimental set-up. 
 

IV. EXPERIMENTAL RESULTS 

A block diagram of a SynRM drive system is depicted in 
Fig. 1. A photo of the experimental set-up is shown in Fig. 7. 

The proposed controllers are implemented by a DSP 
control system. The DSP control board includes 4-channels 
of D/A converter and 2-channels of encoder interface circuits. 
The coordinate translation in the field-oriented mechanism is 
implemented by the DSP control system. The SynRM used in 
this drive system is a three-phase two-pole 230 V, 375 W, 2.7 
A, 3600 rpm type. For the position control system, a 
magnet-force brake machine is operated to provide a constant 
disturbance torque. A mechanism with an adjustable inertia is 
also coupled to the rotor of the SynRM. The sampling 
interval of the control processing in the experiment is set at 2 
msec. The methodologies proposed for the real-time control 
implementation in the DSP are composed of a main program 
and a secondary interrupt service routine (SIR) in the DSP 
control system as shown in Fig. 8. 

In the main program, the parameters and input/output (I/O) 
initialization are processed first. Then the interrupt interval 
for the SIR is set. After enabling the interrupt, the main 
program is used to monitor the control data. A SIR with a 2 
msec sampling interval is used for reading the rotor position 
of the SynRM drive system from the encoder and three-phase 
currents of the A/D converter, calculating the reference 
model and position error, executing the lookup table and 
coordinate translation, executing the nonlinear backstepping 
control system using the reformed recurrent Hermite 
polynomial neural network with an adaptive law and an error 
estimated law, and outputting three-phase current commands 
to the hysteresis-band comparison current control circuit for 
switching the PWM voltage source inverter with three sets of 
IGBT power modules via interlock and isolated circuits. The 
PWM voltage source inverter with three sets of IGBT power 
modules is executed by current-controlled sinusoidal PWM 
with a switching frequency of 15 kHz by means of a 
triangular carrier wave. In addition, the measured bandwidth 
of the speed control loop is about 200Hz and the measured  

 
Fig. 8. Flowchart of the executing program using a DSP control 
system.  
 
bandwidth of the current control loop is about 2000Hz for the 
SynRM drive system during a no-load test. 

Five test cases are provided for control performance 
comparisons between the conventional PI controller, the 
proposed nonlinear backstepping control system using an 
upper bound with a switching function, the proposed 
nonlinear backstepping control system using an adaptive law, 
and the proposed nonlinear backstepping control system 
using the reformed recurrent Hermite polynomial neural 
network with an adaptive law and an error estimated law. 
Case 1 is a periodic step command from 0 rad to 6.28 rad in 
the nominal case. Case 2 is a periodic step command from 0 
rad to 6.28 rad in the parameter disturbance case with 4 times 
the nominal value as an increasing of the rotor inertia and 
viscous friction. Case 3 is a periodic sinusoidal command 
from -6.28 rad to 6.28 rad in the nominal case. Case 4 is a 
periodic sinusoidal command from -6.28 rad to 6.28 rad in 
the parameter disturbance case with 4 times the nominal 
value as an increasing of the rotor inertia and viscous friction. 
Case 5 is a load torque disturbance NmTl 2  while adding 

load case. To achieve good transient and steady-state control  
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(a) 

 
(b) 

Fig. 9. Experimental results of the conventional PI controller 
attributed to Case 1: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 
 

 
(a) 

 
(b) 

Fig. 10. Experimental results of the conventional PI controller 
attributed to Case 2: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 

 
performance, all of the gains of the conventional PI controller 
are ,5.5ppk 8.2/  ipppip Tkk  through heuristic knowledge 

[29]-[31] on the tuning of the PI controller attributed to Case 1 
for position tracking. In this way, good transient and steady- 
state control performance is achieved. First, a second-order 
transfer function in the following form with a rising time of 
0.05 sec is chosen as the reference model [32] by using a 
reduction of the order method for the periodic step command: 

115668

1156

)(

)(
2

*

0 


 sss

s
lT

m
            (64) 

Then when the command is a sinusoidal reference 
trajectory, the reference model is set as a unit gain. 
Experimental results obtained with the conventional PI 
controller for controlling the SynRM drive system attributed 
to Case 1 and Case 2 are shown in Figs. 9 and 10, 
respectively. The position responses of the rotor attributed to 
Case 1 and Case 2 are shown in Figs. 9(a) and 10(a), 
respectively. In addition, the associated control efforts, i.e., 

torque current Qi , are shown in Figs. 9(b) and 10(b), 

respectively. Experimental results obtained with the 
conventional PI controller for controlling the SynRM drive 
system attributed to Case 3 and Case 4 are shown in Figs. 11 
and 12, respectively. The position responses of the rotor 
attributed to Case 3 and Case 4 are shown in Figs. 11(a) and 
12(a), respectively. In addition, the associated control efforts, 

i.e., torque current Qi , are shown in Figs. 11(b) and 12(b), 

respectively. 
Favorable tracking responses of the position can be 

obtained by using the conventional PI controller in Case 1 
and Case 3 as shown in Figs. 9(a) and 11(a). Moreover, the 
two worsened tracking responses of the position, shown in 
Figs. 10(a) and 12(a), are very obvious due to the bigger 
nonlinear disturbance. From these experimental results, 
sluggish tracking responses of the position are obtained for 
controlling the SynRM drive system using the conventional 
PI controller. The linear controller has weak robustness under 
bigger nonlinear disturbance since it has no appropriately 
gains tuning or large nonlinear effect. 

The parameters of the proposed nonlinear backstepping 
control system using an upper bound with a switching 
function are given as 2.21 k , 7.12 k , 3.23 k  and 

5.7lz  according to heuristic knowledge [11], [12], which 

results in a periodic step command from 0 rad to 6.28 rad in 
the nominal case for the position tracking to achieve good 
transient and steady-state control performances. Experimental 
results obtained with the proposed nonlinear backstepping 
control system using an upper bound with a switching 
function for controlling the SynRM drive system attributed to 
Case 1 and Case 2 are shown in Figs. 13 and 14, respectively. 

The position responses of the rotor attributed to Case 1 and 
Case 2 are shown in Figs. 13(a) and 14(a), respectively. The 

associated control efforts, i.e., torque current Qi , are shown 

in Figs. 13(b) and 14(b), respectively. 
Experimental results of the proposed nonlinear backstepping 

control system using an upper bound with a switching 
function for controlling the SynRM drive system attributed to 
Case 3 and Case 4 are shown in Figs. 15 and 16, respectively. 
The position responses of the rotor attributed to Case 3 and 
Case 4 are shown in Figs. 15(a) and 16(a), respectively. The 

associated control efforts, i.e., torque current Qi , are shown 

in Figs. 15(b) and 16(b), respectively. Favorable tracking  



1390                        Journal of Power Electronics, Vol. 18, No. 5, September 2018 

 

 
(a) 

 
(b) 

Fig. 11. Experimental results of the conventional PI controller 
attributed to Case 3: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 
 

 
(a) 

 
(b) 

Fig. 12. Experimental results of the conventional PI controller 
attributed to Case 4: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 

 
responses of the position can be obtained by means of the 
proposed nonlinear backstepping control system using an 
upper bound with a switching function under Case 1 and Case 
3 as shown in Figs. 13(a) and 15(a), respectively. Meanwhile, 
fine tracking responses of the position shown in Figs. 14(a) 
and 16(a) are obvious under bigger nonlinear disturbance. 
From these experimental results, good tracking responses of 
the position are obtained for controlling the SynRM drive 
system by means of the proposed nonlinear backstepping 
control system using an upper bound with a switching 
function under the nominal case and the parameter  

 
(a) 

 
(b) 

Fig. 13. Experimental results obtained with the proposed 
nonlinear backstepping control system using an upper bound 
with a switching function attributed to Case 1: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 
 

 
(a) 

 
(b) 

Fig. 14. Experimental results obtained with the proposed 
nonlinear backstepping control system using an upper bound 
with a switching function attributed to Case 2: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 

 
disturbance case. However, a larger upper bound with a 
switching function results in very serious chattering in the 

control effort, i.e., torque current Qi . Moreover, the chattering 

control effort produces wear on the bearing mechanism and 
may excite unstable system dynamics. 

The parameters of the nonlinear backstepping control 
system using an adaptive law are given as 2.21 k , 7.12 k ,  
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(a) 

 

(b) 

Fig. 15. Experimental results obtained with the proposed 
nonlinear backstepping control system using an upper bound 
with a switching function attributed to Case 3: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 

 

 

(a) 

 

(b) 

Fig. 16. Experimental results obtained with the proposed 
nonlinear backstepping control system using an upper bound 
with a switching function attributed by Case 4: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 

 
3.23 k  and 52.01   according to heuristic knowledge 

[11], [12], which results in a periodic step command from 0 
rad to 6.28 rad in the nominal case for the position tracking to 
achieve good transient and steady-state control performances. 
Experimental results of the proposed nonlinear backstepping 
control system using an adaptive law for controlling the 
SynRM drive system attributed to Case 1 and Case 2 are 

 

(a) 

 

(b) 

Fig. 17. Experimental results obtained with the proposed 
nonlinear backstepping control system using an adaptive law 
attributed to Case 1: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current 

Qi . 

 

 

(a) 

 

(b) 

Fig. 18. Experimental results obtained with the proposed 
nonlinear backstepping control system using an adaptive law 
attributed to Case 2: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 

 
shown in Fig. 17 and Fig. 18, respectively. The position 
responses of the rotor under Case 1 and Case 2 are shown in 
Figs. 17(a) and 18(a), respectively. In addition, the associated 

control efforts, i.e., torque current Qi , are shown in Figs. 

17(b) and 18(b), respectively. Experimental results of the 
proposed nonlinear backstepping control system using an 
adaptive law for controlling the SynRM drive system 
attributed to Case 3 and Case 4 are shown in Fig. 19 and  
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(a) 

 

(b) 

Fig. 19. Experimental results obtained with the proposed 
nonlinear backstepping control system using an adaptive law 
attributed to Case 3: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 

 

 
(a) 

 

(b) 

Fig. 20. Experimental results obtained with the proposed 
nonlinear backstepping control system using an adaptive law 
attributed to Case 4: (a) Position response of the rotor, (b) 
Response of the control effort, i.e., torque current Qi . 

 
Fig. 20, respectively. From these experimental results, better 
tracking responses of the position are obtained for controlling 
the SynRM drive system using the proposed nonlinear 
backstepping control system using an adaptive law due to the 
adaptive mechanism action. The position responses of the 
rotor under Case 3 and Case 4 are shown in Figs. 19(a) and 
20(a), respectively. The associated control efforts, i.e., torque 
current Qi , are shown in Figs. 19(b) and 20(b), respectively. 

Good tracking responses of the position can be obtained by 

means of the proposed nonlinear backstepping control system 
using an adaptive law under the nominal case shown in Figs. 
17(a) and 19(a), respectively. Moreover, the good tracking 
responses of the position shown in Figs. 18(a) and 20(a) are 
evident under the bigger nonlinear disturbance. 

The parameters of the proposed nonlinear backstepping 
control system using the reformed recurrent Hermite 
polynomial neural network with an adaptive law and an error 
estimated law are given as 2.21 k , 7.12 k , 3.23 k , 

1.0  and 5.0  according to heuristic knowledge [11], 

[12], [14], [17], [19], which results in a periodic step 
command from 0 rad to 6.28 rad in the nominal case to 
achieve good transient and steady-state control performances. 

Furthermore, to show the effectiveness of the control 
system with a small number of neurons, the reformed 
recurrent Hermite polynomial neural network has 2, 4 and 1 
neurons in the input layer, the hidden layer and the output 
layer, respectively. The parameter adjustment process 
remains continually active for the duration of the experiment. 
Parameter initialization of the reformed recurrent Hermite 
polynomial neural network in [28] is adopted to initialize the 
parameters. The parameter adjustment process remains 
continually active for the duration of the experiment. 
Experimental results of the proposed nonlinear backstepping 
control system using the reformed recurrent Hermite 
polynomial neural network with an adaptive law and an error 
estimated law for controlling the SynRM drive systems 
attributed to Case 1 and Case 2 are shown in Figs. 21 and 22, 
respectively. 

Position responses of the rotor under Case 1 and Case 2 are 
shown in Figs. 21(a) and 22(a), respectively. In addition, the 

associated control efforts, i.e., torque current Qi , are shown 

in Figs. 23(b) and 24(b), respectively. Experimental results of 
the proposed nonlinear backstepping control system using the 
reformed recurrent Hermite polynomial neural network with 
an adaptive law and an error estimated law for controlling the 
SynRM drive systems attributed to Case 3 and Case 4 are 
shown in Fig. 23 and Fig. 24, respectively. Position responses 
of the rotor under Case 3 and Case 4 are shown in Figs. 23(a) 
and 24(a), respectively. The associated control efforts, i.e., 

torque current Qi , are shown in Figs. 23(b) and 24(b), 

respectively. The best tracking responses of the position can 
be obtained by means of the proposed nonlinear backstepping 
control system using the reformed recurrent Hermite 
polynomial neural network with an adaptive law and an error 
estimated law under Case 1 and Case 3 as shown in Figs. 
21(a) and 23(a), respectively. Moreover, the excellent 
tracking responses of the position shown in Figs. 22(a) and 
24(a) are very conspicuous under a bigger nonlinear 
disturbance. From these experimental results, better tracking 
responses of the position are obtained by using the proposed 
nonlinear backstepping control system using the reformed  
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(a) 

 

(b) 

Fig. 21. Experimental results obtained with the proposed 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an adaptive 
law and an error estimated law attributed to Case 1: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 

 

 

(a) 

 

(b) 

Fig. 22. Experimental results obtained with the proposed 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an adaptive 
law and an error estimated law attributed by Case 2: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 

 
recurrent Hermite polynomial neural network with an adaptive 
law and an error estimated law for controlling SynRM drive 
systems. 

Finally, experimental results of the measured rotor position 
response caused by Case 5 are shown in Fig. 25. Experimental  

 

(a) 

 

(b) 

Fig. 23. Experimental results obtained with the proposed 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an adaptive 
law and an error estimated law attributed to Case 3: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 
 

 

(a) 

 

(b) 

Fig. 24. Experimental results obtained with the proposed 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an adaptive 
law and an error estimated law attributed to Case 4: (a) Position 
response of the rotor, (b) Response of the control effort, i.e., 
torque current Qi . 

 
results of the measured rotor position responses by means of 
the conventional PI controller, the proposed nonlinear 
backstepping control system using an upper bound with a 
switching function, the proposed nonlinear backstepping 
control system using an adaptive law, and the proposed  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 25. Experimental results of the measured rotor position 
response under Case 5 by means of: (a) The conventional PI 
controller, (b) The proposed nonlinear backstepping control 
system using an upper bound with a switching function, (c) The 
proposed nonlinear backstepping control system using an 
adaptive law, (d) The proposed nonlinear backstepping control 
system using the reformed recurrent Hermite polynomial neural 
network with an adaptive law and an error estimated law. 
 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an 
adaptive law and an error estimated law under Case 5 are 
shown in Figs. 25(a), 25(b), 25(c) and 25(d), respectively. 
From these experimental results, the transient response of the 
proposed nonlinear backstepping control system using the 
reformed recurrent Hermite polynomial neural network with 
an adaptive law and an error estimated law is better than 
those of the conventional PI controller, the proposed nonlinear  

TABLE I 
PERFORMANCE COMPARISONS OF FOUR CONTROL SYSTEMS  

WITH RESPECT TO FIVE TEST CASES 

Per-formance  
Conventional PI controller 

Case 1 Case 2 Case 3 Case 4 Case 5
ME of 1d  0.64 rad 1.28 rad 0.72 rad 1.26 rad 2.51 rad

RMSE of 1d  0.45 rad 0.91 rad 0.53 rad 0.89 rad 1.77 rad

Per-formance 
Control system A 

Case 1 Case 2 Case 3 Case 4 Case 5

ME of 1d  0.62 rad 0.65 rad 0.61 rad 0.64 rad 1.26 rad

RMS error of 1d 0.44 rad 0.46 rad 0.42 rad 0.45 rad 0.89 rad

Per-formance 
Control system B 

Case 1 Case 2 Case 3 Case 4 Case 5

ME of 1d  0.60 rad 0.63 rad 0.58 rad 0.62 rad 1.13 rad

RMSE of 1d  0.42 rad 0.45 rad 0.41 rad 0.44 rad 0.81 rad

Per-formance 
Control system C 

Case 1 Case 2 Case 3 Case 4 Case 5

ME of 1d  0.54 rad 0.58 rad 0.52 rad 0.56 rad 0.63 rad

RMSE of 1d  0.36 rad 0.41 rad 0.37 rad 0.40 rad 0.45 rad

 

backstepping control system using an upper bound with a 
switching function and the proposed nonlinear backstepping 
control system using an adaptive law under load regulation. 

However, the robust control performance of the proposed 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an 
adaptive law and an error estimated law was outstanding for 
the tracking of periodic steps and sinusoidal commands under 
the occurrence of parameter disturbances and load regulation 
due in large part to the on-line adaptive adjustment of the 
reformed recurrent Hermite polynomial neural network. 

Additionally, a comparison of the control performances of 
the conventional PI controller, the proposed nonlinear 
backstepping control system using an upper bound with a 
switching function, the proposed nonlinear backstepping 
control system using an adaptive law, and the proposed 
nonlinear backstepping control system using the reformed 
recurrent Hermite polynomial neural network with an 
adaptive law and an error estimated law is summarized in 
Table I with respect to the experimental results of five test 
cases. 

The maximum errors (ME) of 1d  using the conventional 

PI controller with: control system A - the proposed nonlinear 
backstepping control system using an upper bound with a 
switching function; control system B - the proposed nonlinear 
backstepping control system using an adaptive law; and 
control system C: the proposed nonlinear backstepping 
control system using the reformed recurrent Hermite 
polynomial neural network with an adaptive law and an error 
estimated law attributed to Case 1 are 0.64 rad, 0.62 rad, 0.60 
rad and 0.54 rad, respectively. In addition, the RMS errors  
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TABLE II 
CHARACTERISTIC PERFORMANCE COMPARISONS  

OF FOUR CONTROL SYSTEMS 

Characteristic 
performance 

Convention
al PI 
controller 

Control 
system A 

Control 
system B 

Control 
system C 

Chattering 
of control effort 

Small Large Middle Small 
 

Dynamic response Slow Fast Faster Fastest 

Load regulation 
ability 

Poor Good Better Best 

Convergence 
speed  

None Fast  Faster  Fastest 

Position tracking 
error 

Large  Middle Middle Small 

Parameter 
disturbance 
rejection 

Poor Good Better Best 

Learning rate None None None Vary 
(Optimal 
learning 
rate) 

 

(RMSE) of 1d  are 0.45 rad, 0.44 rad, 0.42 rad and 0.36 rad, 

respectively. The ME of 1d  by using the conventional PI 

controller with: control system A, control system B and 
control system C attributed to Case 2 are 1.28 rad, 0.65 rad, 
0.63 rad and 0.58 rad, respectively. In addition, the RMSE of 

1d  are 0.91 rad, 0.46 rad, 0.45 rad and 0.41 rad, respectively. 

The ME of 1d  by using the conventional PI controller with: 

control system A, control system B and control system C 
attributed to Case 3 are 0.72 rad, 0.61 rad, 0.58 rad and 0.52 
rad, respectively. In addition, the RMSE of 1d  are 0.53 rad, 

0.42 rad, 0.41 rad and 0.37 rad, respectively. The ME of 1d  

by using the conventional PI controller with: control system 
A, control system B and control system C attributed to Case 4 
are 1.26 rad, 0.64 rad, 0.62 rad and 0.56 rad, respectively. In 
addition, the RMSE of 1d  are 0.89 rad, 0.45 rad, 0.44 rad 

and 0.40 rad, respectively. The ME of 1d  by using the 

conventional PI controller with: control system A, control 
system B and control system C attributed to Case 5 are 2.51 
rad, 1.26 rad, 1.13 rad and 0.63 rad, respectively. In addition, 
the RMSE of 1d  are 1.77 rad, 0.89 rad, 0.81 rad and 0.45 

rad, respectively. As shown in the table, control system C 
results in a smaller tracking error in comparison with using 
the conventional PI controller, control system A and control 
system B. According to the tabulated measurements, control 
system 4 yields superior control performance. 

Furthermore, characteristic performances comparisons of 
the conventional PI Controller, control systems A, control 
system B and control system C are summarized in Table II 
with respect to experimental results. As shown in the table, the 
various performances of control system C are superior to 
those of the conventional PI Controller, control systems A 

and control system B in terms of characteristic performances 
such as chattering of the control effort, dynamic response, 
load regulation capability, convergence speed, position 
tracking error and parameter disturbance rejection. 

 

V. CONCLUSIONS 

A nonlinear backstepping control system using the 
reformed recurrent Hermite polynomial neural network with 
an adaptive law and an error estimated law is proposed to 
control a SynRM drive system for the position tracking of 
periodic reference inputs and load regulation. 

The main contributions of this paper are as follows. 1) The 
field-oriented mechanism has been successfully applied to the 
control of a SynRM drive system. 2) The controller design of 
the nonlinear backstepping control system using an upper 
bound with a switching function has been successfully 
derived according to the Lyapunov function under a lumped 
uncertainty disturbance. 3) The controller design of the 
nonlinear backstepping control system using an adaptive law 
to estimate the lumped uncertainty has been successfully 
derived according to the Lyapunov function for reducing the 
chattering affect. 4) The control design of the nonlinear 
backstepping control system using the reformed recurrent 
Hermite polynomial neural network with an adaptive law and 
an error estimated law to estimate lumped uncertainty and to 
compensate estimated errors has been successfully derived 
according to the Lyapunov function for diminishing the 
lumped uncertainty effect. 5) The reformed recurrent Hermite 
polynomial neural network with two varied learning rates has 
been successfully derived according to the increment type 
Lyapunov function to speed-up the parameter convergence. 

Furthermore, as indicated by the experimental results and 
Table I, the proposed nonlinear backstepping control system 
using the reformed recurrent Hermite polynomial neural 
network with an adaptive law and an error estimated law has 
a smaller tracking error and better disturbance rejection in 
comparison with the conventional PI controller, the proposed 
nonlinear backstepping control system using an upper bound 
with a switching function and the proposed nonlinear 
backstepping control system using an adaptive law. 

Finally, comparisons of the various control performances 
shown in Table II for the four control systems verified that 
the proposed nonlinear backstepping control system using the 
reformed recurrent Hermite polynomial neural network with 
an adaptive law and an error estimated law for controlling a 
SynRM drive system is superior to those of the conventional 
PI controller, the proposed nonlinear backstepping control 
system using an upper bound with a switching function and 
the proposed nonlinear backstepping control system using an 
adaptive law with respect to the chattering of the control 
effort, dynamic response, capability of load regulation, 
position tracking error and parameter disturbance rejection. 
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