• Title/Summary/Keyword: Motion Error

Search Result 1,368, Processing Time 0.029 seconds

Synthesis of an On-Line 5 Degrees of Freedom Error Measurement System for Translational Motion Rigid Bodies (병진운동 강체의 온라인 5자유도 운동오차 측정시스템 설계 및 해석)

  • 김진상;정성종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.93-99
    • /
    • 1998
  • Although laser interferometer measurement system has advantages of measurement range and accuracy, it has some disadvantages when measurement of multi degrees of freedom of motion are required. Because the traditional error measurement methods for geometric errors (two straightness and three angular errors) of a slide of machine tools measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric errors of a moving rigid body in real time processes, an on-line error measurement system for simultaneous detection of the five error components of a moving object is required. Using laser alignment technique and some optoelectronic components, an on-line measurement system with 5 degrees of freedom was developed for the geometric error detection in this study Performance verification of the system has been performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a slide of machine tools.

  • PDF

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

Motion Simplification of Virtual Character (가상 캐릭터의 동작 단순화 기법)

  • Ahn, Jung-Hyun;Oh, Seung-Woo;Wohn, Kwang-Yun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.759-767
    • /
    • 2006
  • The level-of-detail (LoD), which is a method of reducing polygons on mesh, is one of the most fundamental techniques in real-time rendering. In this paper, we propose a novel level-of-detail technique applied to the virtual character's motion (Motion LoD). The movement of a virtual character can be defined as the transformation of each joint and it's relation to the mesh. The basic idea of the proposed 'Motion LoD' method is to reduce number of joints in an articulated figure and minimize the error between original and simplified motion. For the motion optimization, we propose an error estimation method and a linear system reconstructed from this error estimation for a fast optimization. The proposed motion simplification method is effectively useful for motion editing and real-time crowd animation.

A Study on Motion and Position Recognition Considering VR Environments (VR 환경을 고려한 동작 및 위치 인식에 관한 연구)

  • Oh, Am-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2365-2370
    • /
    • 2017
  • In this paper, we propose a motion and position recognition technique considering an experiential VR environment. Motion recognition attaches a plurality of AHRS devices to a body part and defines a coordinate system based on this. Based on the 9 axis motion information measured from each AHRS device, the user's motion is recognized and the motion angle is corrected by extracting the joint angle between the body segments. The location recognition extracts the walking information from the inertial sensor of the AHRS device, recognizes the relative position, and corrects the cumulative error using the BLE fingerprint. To realize the proposed motion and position recognition technique, AHRS-based position recognition and joint angle extraction test were performed. The average error of the position recognition test was 0.25m and the average error of the joint angle extraction test was $3.2^{\circ}$.

Measurement of Five DOF Motion Errors in the Ultra Precision Feed Tables (초정밀 이송테이블의 5 자유도 운동오차 측정)

  • Oh Yoon Jin;Park Chun Hong;Hwang Joo Ho;Lee Deug Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.135-141
    • /
    • 2005
  • Measurement of five DOF motion errors in a ultra precision feed table was attempted in this study. Yaw and pitch error were measured by using a laser interferometer and roll error was measured by using the reversal method. Linear motion errors in the vertical and horizontal directions were measured by using the sequential two point method. In this case, influence of angular motion errors was compensated by using the previously measured ones by the laser interferometer and the reversal method. The capacitive type sensors and an optical straight edge were used in the reversal method and the sequential two point method. Influence of thermal deformation on sensor jig was investgated and minimized by the periodic measurement according to the variation of room temperature. Deviation of gain between sensors was also compensated using the step response data. 5 DOF motion errors of a hydrostatic table driven by the linear motor werer tested using the measurement method. In the horizontal direction, measuring accuracies for the linear and angular motion were within ${\pm}0.02\;{\mu}m$ and ${\pm}0.04$ arcsec, respectively. In the vertical direction, they were within ${\pm}0.02{\mu}m$ and ${\pm}0.05$ arcsec. From these results, it was found that the introduced measurement method was very effective to measure 5 DOF motion errors of the ultra precision feed tables.

High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method (새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어)

  • Oh, Seung-Hyun;Kim, Jung-ho;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF

Design of a 3DOF motion capture system for HMD using micro gyroscopes

  • Song, Jin-Woo;Chung, Hak-Young;Park, Chan-Gook;Lee, Jang-Gyu;Kang, Tae-Sam;Park, Kyu-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.64.2-64
    • /
    • 2001
  • In this paper, fabricated is a motion capture and attitude detection system for Head Mounted Display HMD composed of three low-price and low-grade micro gyroscopes and a micro-controller, To calculate attitude of a body, modified INS algorithm is used. Because the micro gyroscope has much bias drift error, scale factor error, and run-to-run bias error, the motion of a body can not be measured exactly if the general INS algorithm and micro gyroscopes are used. To reduce the errors, three accelerometers can be used. In this case, however, the size and power consumption become too large to use in HMD system. The modified INS algorithm use the grid map and the characteristics of the human motions.

  • PDF

Precision Measurement System forBall Screw Pitch Error (볼스크류 전구간 피치오차 측정시스템)

  • 박희재;김인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.279-285
    • /
    • 1993
  • This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.

  • PDF

Design of the Estimator of Forward Kinematics Solution for a 6 DOF Motion Bed (6자유도 운동재현용 베드의 순기구학 추정기 설계)

  • 강지윤;김동환;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.483-487
    • /
    • 1996
  • We consider the estimation of the position and orientation of 6 DOF motion bed (Stewart platform) from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complity of the equation with multiple solutiple solutions. Hence we suggest an algorithm for the estimation of forward kinematics solution using Luenberger observer withnonlinear error correction term. The Luenberger observer withlinear model shows that the estimation error does not go to zero in steadystate due to the linearization error of the dynamic model. Hence the linear observer is modified using nonlinear measurement error equation and we prove thd practical stability of the estimation error dynamics of the proposed observer using lyapunov function.

  • PDF

The evaluation of aerostatic guide-ways for planar XY stage (평면 XY 스테이지용 공기베어링 안내면 오차 평가)

  • Hwang J.H.;Park C.H.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.141-142
    • /
    • 2006
  • This paper describes estimation method for 2D position error of planar XY stage from measured profiles of guide-ways. The XY stage usually moves along its guide ways. The motion error of each stage has effect on 2D position errors of XY stages and affected mainly by profiles of guide-ways. To estimate 2D position error and flatness of stages, the profiles of guide-ways were measured and used in motion error estimation.

  • PDF