• 제목/요약/키워드: Morrey spaces

검색결과 15건 처리시간 0.023초

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

  • Wu, Jianglong
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.423-435
    • /
    • 2014
  • In this paper, the fractional Hardy-type operator of variable order ${\beta}(x)$ is shown to be bounded from the Herz-Morrey spaces $M\dot{K}^{{\alpha},{\lambda}}_{p_1,q_1({\cdot})}(\mathbb{R}^n)$ with variable exponent $q_1(x)$ into the weighted space $M\dot{K}^{{\alpha},{\lambda}}_{p_2,q_2({\cdot})}(\mathbb{R}^n,{\omega})$, where ${\omega}=(1+|x|)^{-{\gamma}(x)}$ with some ${\gamma}(x)$ > 0 and $1/q_1(x)-1/q_2(x)={\beta}(x)/n$ when $q_1(x)$ is not necessarily constant at infinity. It is assumed that the exponent $q_1(x)$ satisfies the logarithmic continuity condition both locally and at infinity that 1 < $q_1({\infty}){\leq}q_1(x){\leq}(q_1)+$ < ${\infty}(x{\in}\mathbb{R}^n)$.

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

ESTIMATE FOR BILINEAR CALDERÓN-ZYGMUND OPERATOR AND ITS COMMUTATOR ON PRODUCT OF VARIABLE EXPONENT SPACES

  • Guanghui, Lu;Shuangping, Tao
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1471-1493
    • /
    • 2022
  • The goal of this paper is to establish the boundedness of bilinear Calderón-Zygmund operator BT and its commutator [b1, b2, BT] which is generated by b1, b2 ∈ BMO(ℝn) (or ${\dot{\Lambda}}_{\alpha}$(ℝn)) and the BT on generalized variable exponent Morrey spaces 𝓛p(·),𝜑(ℝn). Under assumption that the functions 𝜑1 and 𝜑2 satisfy certain conditions, the authors proved that the BT is bounded from product of spaces 𝓛p1(·),𝜑1(ℝn)×𝓛p2(·),𝜑2(ℝn) into space 𝓛p(·),𝜑(ℝn). Furthermore, the boundedness of commutator [b1, b2, BT] on spaces Lp(·)(ℝn) and on spaces 𝓛p(·),𝜑(ℝn) is also established.

Fractional Integrals and Generalized Olsen Inequalities

  • Gunawan, Hendra;Eridani, Eridani
    • Kyungpook Mathematical Journal
    • /
    • 제49권1호
    • /
    • pp.31-39
    • /
    • 2009
  • Let $T_{\rho}$ be the generalized fractional integral operator associated to a function ${\rho}:(0,{\infty}){\rightarrow}(0,{\infty})$, as defined in [16]. For a function W on $\mathbb{R}^n$, we shall be interested in the boundedness of the multiplication operator $f{\mapsto}W{\cdot}T_{\rho}f$ on generalized Morrey spaces. Under some assumptions on ${\rho}$, we obtain an inequality for $W{\cdot}T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.