• Title/Summary/Keyword: Monte Carlo 해석

Search Result 626, Processing Time 0.03 seconds

Monte-Carlo Simulation for GEO-KOMPSAT2 Orbit Determination Accuracy (Monte-Carlo 시뮬레이션을 통한 정지궤도복합위성 궤도결정 정밀도 해석)

  • Park, Bong-Kyu;Ahn, Sang Il;Kim, Bang Yeop
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.40-47
    • /
    • 2013
  • GEO-KOMPSAT2 shall be designed to produce higher quality of image than that of COMS, and this requires the ground system to provide orbit data with high accuracy; better than 2km which is sort of high accuracy when it comes to geostationary satellite. For GEO-KOMPSAT2, KARI is planning to use ranging data for orbit determination, obtained from two ranging stations located in KARI and oversea country with long longitudinal baseline. This paper estimated achievable orbit determination accuracy using covariance analysis under assumption of using two ranging stations; SOC and available secondary tracking stations located in oversea countries. In addition to covariance analysis, in order to validate the analysis, the Monte-Carlo simulation has been performed and compared to the covariance analysis.

The Estimation of Analytical Method for Axial Force-Moment Relationships of High-Strength Concrete Structures using Reliability Theory (신뢰성 이론을 이용한 고강도콘크리트 구조물의 축력-모멘트관계에 있어서의 해석방법에 대한 평가)

  • 최광진;장일영;송재호;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.447-454
    • /
    • 1998
  • The main object of the study is that axial force-moment relationships for high strength concrete structures using reliability theory(Linear statstical method, Monte Carlo Simulation) including probability conception. And mean stress factors and centroid factors proposed to high strength concrete structures using reliability theory(Linear statstical method, Monte Carlo Simulation). Finally, The established experimental data for axial force-moment relationships are compared to the analytical data(data for Linear statstical method and Monte Carlo Simulation) for axial force-moment relationships in this analytical method.

  • PDF

alysis of ion motion in fusion plasma by Monte Carlo Simulation (Monte Carlo 법을 이용한 플라즈마 내의 이온 운동 해석)

  • Lee, Hong-Sik;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.447-450
    • /
    • 1989
  • Single particle orbit in plasma is obtained by drift Hamiltonian formulation in magnetic coordinate. The collisional effect is implied by Monte Carlo Method and the velocity space diffusion, energy transfer to the back ground plasma and the variation of energy distribution of test particles are investigated from many particles analysis.

  • PDF

Application of Uncertainty Method fer Analyzing Flood Inundation in a River (하천 홍수범람모의를 위한 불확실도 해석기법의 적용)

  • Kim, Jong-Hae;Han, Kun-Yeun;Seo, Kyu-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.661-671
    • /
    • 2003
  • The reliability model is developed for analyzing parameter uncertainty and estimating of flood inundation characteristics in a protected lowland. The approach is based on the concept of levee safety factor and the statistical analysis of model parameters affecting the variability of flood levels. Monte Carlo simulation is incorporated into the varied flow and unsteady flow analysis to quantify the impact of parameter uncertainty on the variability of flood levels. The model is applied to a main stem of the Nakdong River from Hyunpoong to Juckpogyo station. Simulation results show that the characteristics of channel overflow and return now are well simulated and the mass conservation was satisfied. The inundation depth and area are estimated by taking into consideration of the uncertainty of width and duration time of levee failure.

Reliability Analysis of Open Cell Caisson Breakwater Against Circular Slip Failure (무공케이슨 방파제의 원호활동에 대한 신뢰성 분석)

  • Kim, Sunghwan;Huh, Jungwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.193-204
    • /
    • 2019
  • Reliability analyses of sixteen domestic design cases of open cell caisson breakwaters against circular sliding failure were conducted in this study. For the reliability analyses, uncertainties of parameters of soils, mound, and concrete cap were assessed. Bishop simplified method was used to obtain load and resistance of open cell caisson breakwater for randomly generated open cell caisson breakwater. Sufficient number of Monte Carlo simulations were conducted for randomly generated open cell caisson breakwaters, and statistical analysis was conducted on loads and resistances collected from the large number of Monte Carlo simulations. Probability of failure produced from Monte Carlo simulation has a nonconvergence issue for very low probability of failure; therefore, First-Order Reliability Method (FORM) was conducted using the statistical characteristics of loads and resistances of open cell caisson breakwaters. In addition, effects of safety factor, uncertainties of load and resistance, and correlation between load and resistance on reliability of open cell caisson breakwaters against circular sliding failure were examined.

Development of 2-D Water Quality Management Model by Using Reliability Analysis (신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Kim, Won;Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.463-474
    • /
    • 2002
  • A two-dimensional water quality management model, Unsteady/Uncertainty Water Quality Model(UUWQM), is developed for a hydrodynamic analysis, an advection-diffusion analysis, and a reliability analysis by using uncertainty technique. The model is applied to the 35 km reach of Sungju to Hyunpoong in the midstream of Nakdong River. 2-D hydrodynamic and water quality analyses are peformed in this reach. Important input variables are decided by sensitivity analysis and verified by Monte Carlo method. Frequency distributions of water quality concentrations are computed from MFOSM method and Monte Carlo method at several locations in this study area. A water quality management system is constructed by calculating the violation probabilities of existing water quality standards.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Analysis of Reinforced Concrete Structures under Carbonation U sing Monte Carlo Simulation method (MSC 방법을 이용한 철근콘크리트 구조물의 탄산화 해석)

  • Kim, Jee-Sang;Park, Hye-Jong;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.301-302
    • /
    • 2009
  • Uncertainties in carbonation process of concrete structures are treated by probability-based durability analysis for carbonation using Monte Carlo simulation technique. The results requires the minimum cover thickness of 53mm for 10% of corrosion probability under 4mm/$year^{0.5}$ of carbonation coefficient. The more researches on statistical properties of design variables may give reliable durability analysis/design methods for carbonation of concrete structures.

  • PDF

Statistical Analysis of Initial Behavior of a Vertically-launched Missile from Surface Ship (수상함에서 발사된 수직 발사 유도탄 초기 거동의 통계적 해석)

  • Kim, Kyung-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.889-895
    • /
    • 2012
  • A vertical launching system(VLS) is a system for holding and firing missiles on surface ships. When a missile is launched in VLS, relative motion between canister and missile and drag force induced by wind can cause initial unstability of a missile. Thus dynamic analysis of initial behavior of vertically launched missile should be performed to prevent collision with any structure of a ship. In this study, dynamic analyses of initial behavior of vertically launched missile are performed using Monte-Carlo simulation, which relys on random sampling and probabilistic distribution of variables. Each parameter related with dynamic behavior of a missile is modeled with probability variables and Recurdyn, a commercial software for multi body dynamic analysis, is used to perform Monte-Carlo simulation. As a result, initial behavior of a missile is evaluated with respect to various performance indexes in a probabilistic sense and sensitivity of the each parameters is calculated.

OCT Signal Analysis and Optimization in Dental Medium using Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 치아 조직내 OCT 신호 해석 및 최적화)

  • 황대석;이승용;김신자;류광렬;이호근;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.321-323
    • /
    • 2004
  • We developed the monte-carlo simulation code for analysis of the On signal in dental medium. In calculation, we obtain the two different propagation signals as a function of the probing depth. Signal 2 begins to exceed the signal 1 at a very small probing depth(=60${\mu}{\textrm}{m}$). For reduce the signal, detection area is limited to radius and detection angle. As numerical result, probing depth becomes appoximately 500${\mu}{\textrm}{m}$.

  • PDF