• Title/Summary/Keyword: Monolithic zirconia

Search Result 108, Processing Time 0.027 seconds

The metameric effect of monolithic zirconias with varying yttrium ratios

  • Mehmet Ejder Guven;Ozlem Kara
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • PURPOSE. To evaluate the metameric disparities among monolithic zirconia materials with differing yttrium compositions across various lighting conditions. MATERIALS AND METHODS. Thirty-six square-shaped zirconia samples measuring 10 × 10 × 0.5 mm were prepared from monolithic zirconia materials with three different yttrium contents. A 0.2 mm thick layer of polymerized dual-polymerizable self-adhesive resin cement was created using a silicone mold with the same dimensions as the prepared zirconia specimens. To evaluate metamerism, color measurements were conducted using a spectrophotometer device on a neutral gray background in a color measurement cabinet that offers four different illumination environments. All samples underwent aging by subjecting them to 10000 thermal cycles using a thermal cycle tester. Following thermal aging, color measurements were taken once more, and the data were recorded using the CIE L*, a*, b* color system. Two-way ANOVA and Post-hoc Bonferroni tests were employed to analyze the data. RESULTS. It was observed that there was no statistical difference among the color measurements made in different illumination environments of the monolithic zirconia ceramics used to evaluate metamerism (P > .05). This observation remained consistent both before and after thermal aging. After thermal aging, the color of monolithic zirconia materials exhibited a tendency towards red and yellow hues, accompanied by a decrease in brightness levels. CONCLUSION. It can be stated that different illumination conditions did not affect the metamerism of monolithic zirconia materials, but there was a color change in monolithic zirconia materials after a thermal aging period equivalent to one year.

Esthetic anterior restoration using 3M LavaTM Esthetic monolithic zirconia (3M LavaTM Esthetic monolithic zirconia를 이용한 전치부 심미 수복 증례)

  • Kim, Hyung Joon;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.306-316
    • /
    • 2018
  • Monolithic zirconia has been widely used in fixed partial dentures due to high strength and fracture toughness. Nevertheless, the usage of monolithic zirconia in anterior restoration was limited because of opacity. Recently, esthetic monolithic zirconia blocks are developed by improving translucency and using various shading systems. Manufacturer introduces 3M $Lava^{TM}$ Esthetic with increased cubic phase and fluorescent ingredients is more esthetic than previous monolithic zirconia. This case report describes favorable anterior restorations using translucent monolithic zirconia.

Evaluation of translucency of monolithic zirconia and framework zirconia materials

  • Tuncel, Ilkin;Turp, Isil;Usumez, Aslihan
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.181-186
    • /
    • 2016
  • PURPOSE. The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS. The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of $15{\times}12{\times}0.5mm$. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background ($L^*w$) and a black background ($L^*b$). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS. Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION. The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations.

Achieving Esthetics in Anterior Region using Monolithic Zirconia Restoration (Monolithic Zirconia Crown을 이용한 심미적 접근)

  • Kim, Chonghwa
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.4-14
    • /
    • 2016
  • Although CAD/CAM technology has been used in dentistry for more than decades, the present CAD/CAM dentistry is still quite inefficient or unesthetic. Zirconia restoration has faced with two contradictory words, 'Efficiency' and 'Esthetics'. One can consider monolithic zirconia restoration to be efficient with CAD/CAM. The monolithic zirconia restoration, however, is rarely esthetic due to the current limitations with zirconia. On the contrary, porcelain build-up is almost indispensible in fabricating esthetic restoration, especially in anterior region. In this article, the current status of monolithic zirconia restoration and clinical cases will be presented.

Full mouth rehabilitation using monolithic zirconia: a clinical report (Monolithic zirconia를 이용한 전악 보철 수복: a clinical report)

  • Oh, Won-Seok;Ryu, Jae-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.358-363
    • /
    • 2015
  • Previously, the usage of monolithic zirconia in anterior restoration was limited because of problems such as the monotony of tones and shades which would compromise the outcome of esthetic purpose. Zirconia was merely used as a coping with additional porcelain veneering whereas porcelain chipping cannot be evaded. Recently, with the improvement of monolithic zirconia, the various translucency and tones made it possible to use zirconia for anterior restoration. In this case, a male patient of 63 years old received a full mouth rehabilitation with monolithic zirconia. After a period of time usage, the outcome showed a favorable result functionally and esthetically.

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

Evaluation of reliability of zirconia materials to be used in implant-retained restoration on the atrophic bone of the posterior maxilla: A finite element study

  • Degirmenci, Kubra;Kocak-Buyukdere, Ayse;Ekici, Bulent
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 2019
  • PURPOSE. Zirconia materials have been used for implant-retained restorations, but the stress distribution of zirconia is not entirely clear. The aim of this study is to evaluate the stress distribution and risky areas caused by the different design of zirconia restorations on the atrophic bone of the posterior maxilla. MATERIALS AND METHODS. An edentulous D4-type bone model was prepared from radiography of an atrophic posterior maxilla. Monolithic zirconia and zirconia-fused porcelain implant-retained restorations were designed as splinted or non-splinted. 300-N occlusal forces were applied obliquely. Stress analyses were performed using a 3D FEA program. RESULTS. According to stress analysis, the bone between the 1) molar implant and the 2) premolar in the non-splinted monolithic zirconia restoration model was stated as the riskiest area. Similarly, the maximum von Mises stress value was detected on the bone of the non-splinted monolithic zirconia models. CONCLUSION. Splinting of implant-retained restorations can be more critical for monolithic zirconia than zirconia fused to porcelain for the longevity of the bone.

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

Esthetic Full Zirconia Fixed Detachable Implant-Retained Restorations Manufactured from Monolithic Zirconia : Clinical Report (Monolithic zirconia framework으로 제작된 fixed detachable prostheses를 이용한 심미적인 임플란트 전악 수복 증례)

  • Hong, Jun-Tae;Choi, Yu-Sung;Han, Se-Jin;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.253-268
    • /
    • 2012
  • Full-mouth reconstruction of a patient using dental implants is a challenge if there is vertical and horizontal bone resorption, since this includes the gingival area and restricts the position of the implants. however, hard- and soft-tissue grafting may allow the implants to be placed into the desired position. Although it is possible to regenerate lost tissues, an alternative is to use fixed detachable prostheses that restore the function and the esthetics of the gingiva and teeth. Various material combinations including metal/acrylic, metal/ceramic, and zirconia/ceramic have been used for constructing this type of restoration. Other problems include wear, separation or fracture of the resin teeth from the metal/acrylic prosthesis, chipping or fracture of porcelain from the metal/ceramic or zirconia/ceramic prosthesis, and fracture of the framework in some free-end prostheses. With virtually unbreakable, chip-proof, life-like nature, monolithic zirconia frameworks can prospectively replace other framework materials. This clinical report describes the restoration of a patient with complete fixed detachable maxillary and mandibular prostheses made of monolithic zirconia with dental implants. The occluding surfaces were made of monolithic zirconia, to decrease the risk of chipping or fracture. The prostheses were esthetically pleasing, and no clinical complications have been reported after two years.

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.