• 제목/요약/키워드: Monitoring station

검색결과 779건 처리시간 0.024초

위성항법 지상국 감시제어시스템 품질 감시 기법 분석 (Quality Monitoring Method Analysis for GNSS Ground Station Monitoring and Control Subsystem)

  • 정성균;이상욱
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.11-18
    • /
    • 2010
  • GNSS(Global Navigation Satellite System) Ground Station performs GNSS signal acquisition and processing. This system generates error correction information and distributes them to GNSS users. GNSS Ground Station consists of sensor station which contains receiver and meteorological sensor, monitoring and control subsystem which monitors and controls sensor station, control center which generates error correction information, and uplink station which transmits correction information to navigation satellites. Monitoring and control subsystem acquires and processes navigation data from sensor station. The processed data is transmitted to GNSS control center. Monitoring and control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation determination module, independent quality monitoring module, and system maintenance and management module. The independent quality monitoring module inspects navigation signal, data, and measurement. This paper introduces independent quality monitoring and performs the analysis using measurement data.

수동측정기에 의한 대기오염 자동측정망의 지역대표성 조사 및 보완방완에 대한 기초연구 (Evaluation and Complement of the Representativeness of Air Quality Monitoring Stations Using Passive Air Samplers)

  • 우정현;김선태;김정욱
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.415-426
    • /
    • 1997
  • Some arguments have been about over the representativeness of government-run air quality monitoring stations among scholars and non-governmental organizations (NGOs). However, it is not a simple problem to move monitoring stations because of continuity of data and high cost. So it is necessary to complement the monitoring data if it do not represent the ambient air quality properly. The purpose of this study was to evaluate the representativeness of some monitoring stations using passive $NO_2$ samplers and to find a complementary method from linear regression. Two stations were chosen for the evaluation: Shinlim Station was one of the most controversial stations in Seoul and Banpo Station had the best reputation. Air qualities were surveyed at seven points around each monitoring station with consideration of land use and distance. The ratios of the average $NO_2$ levels of the areas to these at the monitoring stations were 1.59 for Shinlim Station and 1.03 for Banpo Station. The differences between the average $NO_2$ levels and those at the monitoring stations were 10.75 ppb for Shilim Station and 0.34 ppb for Banpo Station. The correlation coefficients between the two levels were 0.7668 for Shinlim and 0.7662 for Banpo. The average coefficients of determination $(R^2)$ were 0.61 for Shinlim and 0.61 for Banpo. The Shinlim Station could not represent the air quality of Shinlim-Dong good because it is located in a green area at an outskirt of Shinlim-Dong. But the Banpo Station located in a central residential area of Banpo-Dong showed a fair representativeness. However, air quality turned out to be different with land use such as residential area, green area or road: the air quality data from a monitoring station located at a certain land use should not be interpreted as representing the air quality at any sites around the station. Equations to predict the average $NO_2$ levels of each area from the data from the monitoring stations were presented based on linear regression.

  • PDF

지하역사의 공기질 감시 시스템 구성에 관한 연구 (A Study on Indoor Air Quality Monitoring System for Subway Stations)

  • 이병석;황선주;이준화;김규식;김조천
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.48-50
    • /
    • 2009
  • This paper presents an IAQ(Indoor Air Quality) Monitoring System using equipments for measurement of fine Particle($PM1{\sim}PM10$), $CO_2$, VOCs(Volatile Organic Compounds), temperature and humidity for IAQ monitoring of subway station which millions of people use a day. The necessity of IAQ monitoring system is getting increased for more effective subway station monitoring in line with the recent government's regulation for IAQ is reinforcing. Subway Station is an unusual case. The structure of subway station is closed and complicated. Therefore when data of equipments are transferred, transmission error can happen occasionally. To prevent transmission error, an IAQ Monitoring System is needed the appropriate position and selection of equipments or sensor module. In addition IT(Information Technology) can be utilized like "WiBro(Wireless Broadband)" and "GateWay" for facilitate movement of data and construction of IAQ monitoring system of subway station.

  • PDF

Environmental Monitoring System for Base Station with Sensor Node Networks

  • Hur, Chung-Inn;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.258-262
    • /
    • 2009
  • A Practical application of environmental monitoring system based on wireless sensor node network with the core of embedded system STR711FR2 microprocessor is presented in the paper. The adaptable and classifiable wireless sensor node network is used to achieve the data acquisition and multi-hop wireless communication of parameters of the monitoring base station environment including repeaters. The structure of the system is proposed and the hardware architecture of the system is designed, and the system operating procedures is proposed. As a result of field test, designed hardware platform operated with 50kbps bit rate and 5MHz channel spacing at 2040Hz. The wireless monitoring system can be managed and swiftly retreated without support of base station environmental monitoring.

Wet Station 장비를 제어하기 위한 모니터링 시스템의 설계 (Design of a Monitoring System for Controlling the Wet Station Equipment)

  • 임성락;한광록;최용엽
    • 한국정보처리학회논문지
    • /
    • 제6권5호
    • /
    • pp.1385-1392
    • /
    • 1999
  • 본 논문에서는 웨이퍼를 세정하는데 사용되는 Wet Station 장비의 상태를 감지하고, 이를 간접적으로 제어하기 위한 모니터링 시스템의 설계에 관하여 기술한다. 대부분의 기존 모니터링 시스템은 하드웨어 및 소프트웨어에 의존되어 있다. 제시한 모니터링 시스템의 기본 설계 목표는 사용자의 편의성과 시스템의 이식성을 제공하는 것이다. 이러한 요구조건을 만족시키기 위하여, 본 논문에서는 IBM PC 호환 기종의 윈도우즈 NT 환경에서 GUL 기능과, TCP/IP 통신 프로토콜을 기본으로 한 EtherNet 보드를 이용하여 시스템을 설계하였다.

  • PDF

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권4호
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

위성항법 지상국 감시제어시스템 예비설계 (Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station)

  • 정성균;이재은;박한얼;이상욱;김재훈
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권2호
    • /
    • pp.227-238
    • /
    • 2008
  • 위성항법 지상국 기술은 위성으로부터 위성항법신호를 받아 위성항법신호를 감시하고 분석하며 위성에 보정정보를 업로드하는 기술로써 위성항법 인프라 구축에 매우 중요한 기술이며 여러 응용분야에 적용할 수 있는 핵심 기술이다. 이 중 한국전자통신연구원에서 개발하고 있는 감시제어시스템은 GPS 및 갈릴레오 항법 위성으로부터 신호 감시 데이터를 수집하여 위성항법 제어센터로 제공하는 기능을 수행하는 소프트웨어 시스템이다. 이 논문에서는 위성항법 지상국의 구성과 감시제어시스템의 목적 및 형상을 소개한 다음, 감시제어시스템의 적용 알고리즘을 소개하고 감시제어시스템의 예비설계를 기술하였다. 감시제어시스템은 데이터 수집, 데이터 포맷팅 및 저장, 데이터 오차 보정, 항법해 결정, 독립 품질 감시, 시스템 운용 및 유지 등의 모듈로 구성되어 있다. 감시제어시스템의 예비설계는 유스케이스 모델, 도메인 설계, 소프트웨어 구조설계, 사용자 인터페이스 구조 설계 과정을 통하여 이루어진다. 각 단계별 설계과정은 UML(Unified Modeling Language) 표준 방식에 따라 이루어졌다. 이 연구에서 설계된 감시제어시스템은 지상국의 운용 능력을 향상시킬 뿐만 아니라 상세설계의 기초자료로 이용될 것이다.

Envi-met 모델을 이용한 도심지역 대기오염측정망 주변의 바람장 분석 (An Analysis of Wind Field around the Air Quality Monitoring Station in the Urban Area by Using the Envi-met Model)

  • 김민경;이화운;도우곤;정우식
    • 한국환경과학회지
    • /
    • 제18권9호
    • /
    • pp.941-952
    • /
    • 2009
  • The urban microscale wind field around the air quality monitoring station was investigated in order to check how a building complex influences it. For this study as the high density areas Jwa-dong and Yeonsan-dong monitoring sites in Busan were chosen. As the direction of inflow which is perpendicular to the building of the monitoring station was expected to cause the considerable variation of the wind field, that direction was selected. The model Envi-met was used as the diagnostic numerical model for this study. It is suitable for this investigation because Envi-met has the microscale resolution. After simulating it, on the leeward side around a building complex the decrease of flow velocity and some of vortexes or circulation area were discovered. In addition, on the edge of the top at the building and at the back of the building the upward flow was developed. If the sampling hole of monitoring site were located in this upward flow, it would be under the influence of upward flow from the near street.

광섬유센서 및 USN 기술의 지하역사 구조건전성 감시시스템 적용방안 연구 (Introduction of the Structural Health Monitoring System with Fiber Optic Sensor & USN for Subway Station)

  • 신정열;안태기;이우동;한석윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.224-231
    • /
    • 2008
  • A subway or an underground railway is one of the representative public transportations which lots of people take everyday. Then, subway station, which is also one of the very important public civil infrastructures, generally services for a long period of time. During the service time of stations, they are easily damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. Recently, civil construction work on the places near station often creates lots of damages to the station. As these damages accumulate, the performance of station degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they bring into the collapse of stations with the structural failure under long-term loads and extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the structural health monitoring system need to be developed for ensuring the safety of station. In this paper, the development directions of the structural health monitoring system with fiber optic sensor and USN for subway station are briefly described.

  • PDF

서울시의 2005~2006년 도시배경 및 상층측정망의 대기질 특성 분석 (Analysis on Air Quality Characteristics through Air Quality Monitoring Stations in urban Background and High Altitude in 2005~2006 in Seoul)

  • 유승성;전재식;정권;신은상;정부전;류리나;우정헌;선우영
    • 환경영향평가
    • /
    • 제20권1호
    • /
    • pp.49-59
    • /
    • 2011
  • The results of comparing $PM_{10}$ concentration between 'Namsan' and 'Yongsan-gu' air quality monitoring stations show similar values with averaged concentration in the whole Seoul. The correlation factors in both sites were 0.865, 0.828 in 2005, 2006, respectively. For 'Bukhansan' and 'Gangbuk-gu' air quality monitoring stations, different from the results mentioned above, they showed clear differences as altitude changes. PM10 concentration in 'Bukhansan' monitoring stations was 10 ${\mu}g/m^3$ lower than 'Gangbuk-gu' monitoring station which is located near the ground. Also, averaged PM10 concentration in 'Bukhansan' and 'Gangbuk-gu' monitoring stations was lower than that in the whole Seoul. When comparing $NO_2$ concentration between 'Namsan' and 'Yongsan-gu' monitoring stations, $NO_2$ concentration in 'Namsan' monitoring station was lower than 'Yongsan-gu' monitoring station. For $NO_2$ concentration in 'Bukhansan', 'Gangbuk-gu' and 'the whole Seoul', there were the same pattern in 'Gangbuk-gu' and the 'the whole Seoul' and low values in 'Bukhansan' monitoring station. The correlation factors of $NO_2$ concentration in 'Bukhansan' and 'Gangbukgu' was 0.525, 0.549 in 2005, 2006, respectively, which stands for low correlationship.