• Title/Summary/Keyword: Monascus pigment

Search Result 79, Processing Time 0.023 seconds

Effect of Monascus Pigment Extract on the Alcohol Metabolism in Rats (흰쥐에 있어서 홍국 색소 추출물이 알코올대사에 미치는 영향)

  • 유대식;최혜정;윤종국
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.603-607
    • /
    • 2003
  • To investigate the alcohol metabolizing system in liver of rats drunken 10% ethanol with Monascus pigment extract (MPE), Sprague-Dawley male rats weighing about 250 g have been drunken 10% ethanol containing 1, 2.5 and 5% Monascus pigment extract for a month. Three groups of rats drunken 10% ethanol with MPE gained somewhat less body weight than normal group, but the changes of body weight was not significantly different among the former groups. All groups drunken MPE supplemented alcohol had no remarkable changes in liver function on the basis of liver weight/body weight, the serum levels of alanine aminotransferase and xanthine oxidase activity. 10% alcohol drunken animals (control group) showed significantly increased activity of hepatic alcohol dehydrogenase (ADH) by 87% compared with normal group and the animals drunken 1%, 2.5% and 5% MPE showed respectively 34%, 29% and 21% increased activity of hepatic ADH, whileas Km value of ADH in 1, 2.5 and 5% MPE group decreased by 40%, 30% and 19% respectively compared with the control, but Vmax showed no significant changes among MPE groups. In case of aldehyde dehydrogenase (ALDH), 1% MPE group showed significantly increased activity by 32% and 2.5% or 5% MPE group showed increasing tendency compared with control, and Km value in three experimental groups declined by 27% and no particular changes were found among those. Furthermore, Vmax value in 1, 2.5 and 5% MEP group increased by 88,56 and 22% respectively with the control. In the aspect of the area under the curve of a ethanol concentration versus time (AUC) profile obtained after administration of 10% alcohol with 1 or 5% MPE, the decreasing rate of AUC to the control was 18% in 1% MPE treated rats whereas 10% in 5% MPE group.

Production and Characteristics of Hongkuk-ju using Monascus anka (Monascus anka를 이용한 홍국주의 제조 및 특성)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Kwan-Pil;Lee, Ki-Won;Yi, Dong-Heui
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • To reproduce the brewing process of Hongkuk-ju and to identify the functional properties of it, Hongkuk-ju was brewed using different additions of Hongkuk (100%, 90%, 70%, 50%) and Nuruk (0%, 10%, 30%, 50%). The quality elements, including pH, total acidity, reducing sugar content, alcohol content and pigments (yellow, red, monacolin K and citrinin), were measured. The pH values of Hongkuk-ju showed a slight difference (pH 4.08~4.58) right after the $1^{st}$ stage mash; further, the pH on all groups (H1, H2, H3 and H4) in the terminal of the $2^{nd}$ stage mash (9 days in fermentation) were similar, ranging approximately at pH 3.70. The total acidity change did not show a difference directly the $1^{st}$ stage mash (nearby 0.2 %); however, it began to show a slight difference at the terminal of the $2^{nd}$ stage mash between the range of 0.69~0.76%. The residual reducing sugar of the content was decreased with the increased Nuruk content. The alcohol concentrations of the treatment brew with Nuruk ranging from 12.3% to 13.7% were higher than Hongkuk on its own. The yellow and red pigment contents of Hongkuk-ju ranged from 7.2~8.8 O.D. units (yellow pigment) and from 4.4~5.1 O.D. units (red pigment). The production of monacolin K and citrinin was the highest (9.48 mg/kg and 10.14 mg/kg) when the treatment solely brewed Hongkuk. The concentration of Nuruk and the preparation of the seed mash from it were critical factors compared to the treatment of rice in brewing Hongkuk-ju.

Polyaromatic Resin HP-20 Induced Accumulation of Intermediate Azaphilones in Monascus purpureus 𝚫mppC and 𝚫mpp7 Strains

  • Lim, Yoon Ji;Lee, Doh Won;Choi, Jeong Ju;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.897-904
    • /
    • 2019
  • Monascus purpureus recombinant mppC and mpp7 knockout strains were subjected to extractive fermentation in the context of azaphilone pigment production. Inclusion of Diaion HP-20 resin resulted in the selective production of unreduced azaphilone congeners, in addition to the early intermediate FK17-P2a, from ${\Delta}mppC$ and ${\Delta}mpp7$ strains that would otherwise mainly produce reduced congeners. Structural determination of two novel unreduced azaphilones from the ${\Delta}mpp7$ strain was accomplished. The unreduced azaphilone compound was converted into the cognate reduced congener in recombinant M. purpureus strains, demonstrating its intermediate role in azaphilone biosynthesis. This study demonstrates the possibility that extractive fermentation with Diaion HP-20 resin can be used to obtain cryptic azaphilone metabolites.

Functional Red Pigment Production in Solid-state Fermentation of Barley by Monascus sp. EBE1. (보리를 이용한 Monascus sp. EBE1 고상발효에 의한 기능성 적색 색소 생산)

  • 조창현;서동진;우건조;강대경
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.253-257
    • /
    • 2002
  • The time-dependent changes of red pigments production in solid-state plant scale fermentor using barley cultured with Monascus sp., instead of rice which was traditionally used, were investigated in this study. A steady increase in the yield of red pigments in barley occurred between the 3rd and 6th days. The optimized conditions (inoculation volume = 6∼8%, initial pH = 6, air supply = 0.6∼0.8 m) promoted the production of red pigments. Short-time steaming of barley (< 20 min) decreased fungal growth and pigments production due to the insufficient gelatiniza-tion. The optical density of the red pigments under the optimized conditions was 120 at 500 ]nm per gram of barley. In addition, the metabolites from the fermented barley with Monucus sp. showed antibacterial effects against Escherichia coli and Salmonella typhimurium. Barley was shown to be one of the best grain sources for solid-state fermentation with Monascu sp., fur obtaining natural pigments and also functional food materials.

Evaluation of Lipid Accumulation's Inhibitory Activity on 3T3-L1 Cells with Red Yeast Barley Extracts (홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가)

  • Kwon, Gi-Seok;Kim, Byung-Hyuk;Lee, Jun-Hyeong;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2021
  • Red yeast rice has been extensively used as food and traditional medicine for thousands of years in East Asian countries. It is produced by the fermentation of a particular yeast (in general, Monascus purpureus) as rice and various cereals (barley, soybean, etc.). Monascus sp. produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites―specifically, monacolin K, γ-aminobutyric acid, dimerumic acid, and monascus pigments―have been reported to lower cholesterol and blood pressure while showing anti-obesity effects. In this study, we investigated the anti-obesity effect of ethanol extract from red yeast barley (RYB) fermented with Monascus sp. BHN-MK 2 on 3T3-L1 cells. The anti-obesity effects of RYB extract were examined: its lipid accumulation inhibitory effect was tested by Oil Red O staining, and obesity-related mRNA expression levels were tested by real-time RT-PCR in MDI stimulated 3T3-L1 cells. The intracellular lipid content of MDI-stimulated 3T3-L1 cells decreased significantly to 5.04%, 12.24%, and 23.52% in response to 200, 400, and 800 ㎍/ml RYB, respectively. Moreovers, we evaluated that RYB extract significantly downregulated the expression of C/EBPα, SREBP-1, and PPAR-γ gene in a dose-dependent manner. As a result, red yeast barley ethanol extracts exerted the strongest anti-obesity effects. Also, the results indicate that red yeast barley could be used as a functional anti-obesity food material.

A New Protein Factor in the Product Formation of Non-Reducing Fungal Polyketide Synthase with a C-Terminus Reductive Domain

  • Balakrishnan, Bijinu;Chandran, Ramya;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1648-1652
    • /
    • 2015
  • Azaphilone polyketides are synthesized by iterative non-reducing fungal polyketide synthases (NR-fPKSs) with a C-terminus reductive domain (-R). Several azaphilone biosynthetic gene clusters contain a putative serine hydrolase gene; the Monascus azaphilone pigment (MAzP) gene cluster harbors mppD. The MAzP productivity was significantly reduced by a knockout of mppD, and the MAzP NR-fPKS-R gene (MpPKS5) generated its product in yeast only when co-expressed with mppD. Site-directed mutations of mppD for conserved Ser/Asp/His residues abolished the product formation from the MpPKS5/mppD co-expression. MppD and its homologs are thus proposed as a new protein factor involved in the product formation of NR-fPKS-R.

Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Hwang, Seok Hyun;Lee, Doh Won;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.249-256
    • /
    • 2017
  • The Monascus azaphilone (MAz) pigment is a well-known food colorant that has yellow, orange and red components. The structures of the yellow and orange MAz differ by two hydride reductions, with yellow MAz being the reduced form. Orange MAz can be non-enzymatically converted to red MAz in the presence of amine derivatives. It was previously demonstrated that mppE and mppG are involved in the biosynthesis of yellow and orange MAz, respectively. However, ${\Delta}mppE$ and ${\Delta}mppG$ knockout mutants maintained residual production of yellow and orange MAz, respectively. In this study, we deleted the region encompassing mppD, mppE and mppG in M. purpureus and compared the phenotype of the resulting mutant (${\Delta}mppDEG$) with that of an mppD knockout mutant (${\Delta}mppD$). It was previously reported that the ${\Delta}mppD$ strain retained the ability to produce MAz but at approximately 10% of the level observed in the wildtype strain. A chemical analysis demonstrated that the ${\Delta}mppDEG$ strain was still capable of producing both yellow and orange MAz, suggesting the presence of minor MAz route(s) not involving mppE or mppG. Unexpectedly, the ${\Delta}mppDEG$ strain was observed to accumulate fast-eluting pigments in a reverse phase high-performance liquid chromatography analysis. A LC-MS analysis identified these pigments as ethanolamine derivatives of red MAz, which had been previously identified in an mppE knockout mutant that produces high amounts of orange MAz. Although the underlying mechanism is largely unknown, this study has yielded an M. purpureus strain that selectively accumulates red MAz.

The Optimal Condition for the Production and Extraction of Monacolin K from Red-Koji (홍국으로부터의 monacolin K 생성 및 추출 최적화)

  • Kwak, Eun-Jung;Cha, Seong-Kwan;Lim, Seong-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.830-834
    • /
    • 2003
  • The optimal condition for the production and extraction of monacolin K was reported. HPLC was used to determine monacolin K a kind of metabolite of Monascus from red-koji made of Monascus purpureus CBS 281.34. After culturing Monascus in solid and liquid media at $30^{\circ}C$ for 10 days, each of these were inoculated with soybean, wheat, barley, waxy rice, and rice and cultivated at $30^{\circ}C$ for 11 days. The production of monacolin K was the highest(0.35g/100g) when cultured with rice. The yield of monacolin K in red-koji increased with drying temperature and time according to the removal of water. Considering monacolin K content and the degree of death of Monascus, red-koji was dried at $80^{\circ}C$ for 60 min. Although monacolin K in red-koji was mostly extracted by 80% ethanol, there was no difference in monacolin K between shaking for 1 min and extraction for $0{\sim}24$ hr after sonication for 7 min. The extracted yield of monacolin K was the highest when the ratio of red-koji and 80% ethanol was 1:9. Moreover, the production of monacolin K appeared to be parallel with that of the pigment.

Pigment and Monacolin K Content of Beni-koji Fermented with Soybean Curd Residue (비지홍국의 색소 및 Monacolin K 함량)

  • 윤은경;김영희;김순동
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.360-364
    • /
    • 2003
  • This study was conducted to investigate the preparation possibility of Beni-koji by Monascus pilosus using dried soybean curd residue(Biji). The additional effect of water(0-50%), glucose(0-10%, w/w), monosodium glutamate(0-0.l%, w/w) and citrus peel water extracts (0-0.5%, v/w) on the pigment and monacolin K content of the Biji Beni-koji were examined. Optimal added amounts of water was 20% of dried Biji. The highest pigment content(OD at 500 nm) of Biji Beni-koji was 1.06 in 10% glucose, 2.26 in 0.01% monosodium glutamate and 2.61 in 0.4% citrus peel water extracts. The content of monacolin K in the Biji Beni-koji added with 10% glucose, 0.01% monosodium glutamate and 0.4% citrus peel water extracts showed 96.38 mg%(w/w), 118.25 mg%(w/w) and 104.50 mg%(w/w), respectively.

Production of Red Pigments by Monascus purpureus in Submerged Culture

  • Lee, Bum-Kyu;Park, No-Hwan;Piao, Hai-Yon;Chung, Wook-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.341-346
    • /
    • 2001
  • For the purpose of mass producing Monascus red pigments optimum medium composition and environmental conditions were investigated in submerged flask cultures. The optimum carbon and nitrogen sources were determined to be 30g/L of glucose and 1.5 g/L of monosodium glutamate (MSG). Of the three metals examined, Fe$\^$2+/ showed the strongest stimulatory effect on pigment production and some stimulatory effect was also found in Mn$\^$2+/. Optimum pH and agitation speed were determined to be 6.5 and 700 rpm, respectively. Under the optimum culture conditions batch fermentation showed that the maximum biomass yield and specific productivity of red pigments were 0.20 g DCW/g glucose and, 32.5 OD$\sub$500/g DCW$\^$-1/h$\^$-1/, respectively.

  • PDF