Browse > Article
http://dx.doi.org/10.4014/jmb.1902.02036

Polyaromatic Resin HP-20 Induced Accumulation of Intermediate Azaphilones in Monascus purpureus 𝚫mppC and 𝚫mpp7 Strains  

Lim, Yoon Ji (Department of Biological Sciences and Bioinformatics, Myongji University)
Lee, Doh Won (Department of Biological Sciences and Bioinformatics, Myongji University)
Choi, Jeong Ju (Department of Biological Sciences and Bioinformatics, Myongji University)
Park, Si-Hyung (Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University)
Kwon, Hyung-Jin (Department of Biological Sciences and Bioinformatics, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.6, 2019 , pp. 897-904 More about this Journal
Abstract
Monascus purpureus recombinant mppC and mpp7 knockout strains were subjected to extractive fermentation in the context of azaphilone pigment production. Inclusion of Diaion HP-20 resin resulted in the selective production of unreduced azaphilone congeners, in addition to the early intermediate FK17-P2a, from ${\Delta}mppC$ and ${\Delta}mpp7$ strains that would otherwise mainly produce reduced congeners. Structural determination of two novel unreduced azaphilones from the ${\Delta}mpp7$ strain was accomplished. The unreduced azaphilone compound was converted into the cognate reduced congener in recombinant M. purpureus strains, demonstrating its intermediate role in azaphilone biosynthesis. This study demonstrates the possibility that extractive fermentation with Diaion HP-20 resin can be used to obtain cryptic azaphilone metabolites.
Keywords
Azaphilone; extractive fermentation; HP-20 resin; intermediate; Monascus purpureus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang TH, Lin TF. 2007. Monascus rice products. Adv. Food Nutr. Res. 53: 123-159.   DOI
2 Patakova P. 2013. Monascus secondary metabolites: production and biological activity. J. Ind. Microbiol. Biotechnol. 40: 169-181.   DOI
3 Gao JM, Yang SX, Qin JC. 2013. Azaphilones: chemistry and biology. Chem. Rev. 113: 4755-4811.   DOI
4 Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, et al. 2015. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr. Rev. Food Sci. Food Saf. 14: 555-567.   DOI
5 Lee CL, Hung YP, Hsu YW, Pan TM. 2013. Monascin and ankaflavin have more anti-atherosclerosis effect and less side effect involving increasing creatinine phosphokinase activity than monacolin K under the same dosages. J. Agric. Food Chem. 61: 143-150.   DOI
6 Hsu WH, Pan TM. 2014. A novel PPARgamma agonist monascin's potential application in diabetes prevention. Food Funct. 5: 1334-1340.   DOI
7 Chang YY, Hsu WH, Pan TM. 2015. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells. J. Agric. Food Chem. 63: 192-199.   DOI
8 Lee CL, Wen JY, Hsu YW, Pan TM. 2013. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J. Agric. Food Chem. 61: 1493-1500.   DOI
9 Lin CH, Lin TH, Pan TM. 2017. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods. Food Funct. 8: 2102-2109.   DOI
10 Wang YR, Liu SF, Shen YC, Chen CL, Huang CN, Pan TM, et al. 2017. A randomized, double-blind clinical study to determine the effect of ANKASCIN 568 plus on blood glucose regulation. J. Food Drug Anal. 25: 409-416.   DOI
11 Feng Y, Shao Y, Chen F. 2012. Monascus pigments. Appl. Microbiol. Biotechnol. 96: 1421-1440.   DOI
12 Liu SF, Wang YR, Shen YC, Chen CL, Huang CN, Pan TM, et al. 2018. A randomized, double-blind clinical study of the effects of Ankascin 568 plus on blood lipid regulation. J. Food Drug Anal. 26: 393-400.   DOI
13 Zheng Y, Xin Y, Shi X, Guo Y. 2010. Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J. Agric. Food Chem. 58: 9523-9528.   DOI
14 Zheng Y, Xin Y, Shi X, Guo Y. 2010. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl. Microbiol. Biotechnol. 88: 1169-1177.   DOI
15 Zheng Y, Zhang Y, Chen D, Chen H, Lin L, Zheng C, et al. 2016. Monascus pigment rubropunctatin: a potential dual agent for cancer chemotherapy and phototherapy. J. Agric. Food Chem. 64: 2541-2548.   DOI
16 Zabala AO, Xu W, Chooi YH, Tang Y. 2012. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem. Biol. 19: 1049-1059.   DOI
17 Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, et al. 2013. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 97: 6337-6345.   DOI
18 Bijinu B, Suh JW, Park SH, Kwon HJ. 2014. Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv. 4: 59405-59408.   DOI
19 Balakrishnan B, Chandran R, Park SH, Kwon HJ. 2015. A new protein factor in the product formation of non-reducing fungal polyketide synthase with a C-terminus reductive domain. J. Microbiol. Biotechnol. 25: 1648-1652.   DOI
20 Chen W, Chen R, Liu Q, He Y, He K, Ding X, et al. 2017. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 8: 4917-4925.   DOI
21 Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, et al. 2014. Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. Kor. Soc. Appl. Biol. Chem. 57: 191-196.   DOI
22 Balakrishnan B, Chen CC, Pan TM, Kwon HJ. 2014. Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett. 55: 1640-1643.   DOI
23 Balakrishnan B, Park SH, Kwon HJ. 2017. A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol. Lett. 39: 163-169.   DOI
24 Xiong X, Zhang X, Wu Z, Wang Z. 2015. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 99: 1173-1180.   DOI
25 Balakrishnan B, Park SH, Kwon HJ. 2017. Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus. Appl. Biol. Chem. 60: 437-446.   DOI
26 Hu Z, Zhang X, Wu Z, Qi H, Wang Z. 2012. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 94: 81-89.   DOI
27 Kang B, Zhang X, Wu Z, Qi H, Wang Z. 2013. Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Process Biochem. 48: 759-767.   DOI
28 Shi K, Tang R, Huang T, Wang L, Wu Z. 2017. Pigment fingerprint profile during extractive fermentation with Monascus anka GIM 3.592. BMC Biotechnol. 17: 46.   DOI
29 Lim YJ, Lee DW, Park SH, Kwon HJ. 2018. Extractive fermentation of Monascus purpureus promotes the production of oxidized congeners of the pigment azaphilone. J. Appl. Biol. Chem. 61: 327-334.   DOI
30 Shi K, Chen G, Pistolozzi M, Xia F, Wu Z. 2016. Improved analysis of Monascus pigments based on their pH-sensitive Uv-Vis absorption and reactivity properties. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 33: 1396-1401.   DOI