• Title/Summary/Keyword: Moment Equation Method

Search Result 276, Processing Time 0.022 seconds

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

A Study on Structural Reliability Analysis Models (구조물(構造物)의 신뢰도(信賴度) 해석(解析)모델에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.37-46
    • /
    • 1985
  • Recently-used structural reliability models are studied, and the usage and characteristics of each method are discussed. Although the First-Order Second Moment method may be efficient in structural reliability analysis, it has limitations which the limit state equation is linear and all the variables are normal. In that point, the Advanced Second-Moment(ASM) method have many good results, but computation of iterative method are trublesome. The results of ASM method similar to Variance Reduction Techniques(VRT), which is one of the Monte Carlo simulation methods. As a results, it is concluded that ASM method and VRT method are most efficient one.

  • PDF

Study on Vertical Dynamics Compensation for Wobbling Effect Mitigation of Electrostatically Levitated Gyroscope

  • Lee, Jongmin;Song, Hyungmin;Sung, Sangkyung;Kim, Chang Joo;Lee, Sangwoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.293-301
    • /
    • 2014
  • We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation electrodes mitigated the rotor's drift rate, showing the effectiveness of the newly proposed control electrodes.

Semi analytical solutions for flexural-torsional buckling of thin-walled cantilever beams with doubly symmetric cross-sections

  • Gilbert Xiao;Silky Ho;John P. Papangelis
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • An unbraced cantilever beam subjected to loads which cause bending about the major axis may buckle in a flexuraltorsional mode by deflecting laterally and twisting. For the efficient design of these structures, design engineers require a simple accurate equation for the elastic flexural-torsional buckling load. Existing solutions for the flexural-torsional buckling of cantilever beams have mainly been derived by numerical methods which are tedious to implement. In this research, an attempt is made to derive a theoretical equation by the energy method using different buckled shapes. However, the results of a finite element flexural-torsional buckling analysis reveal that the buckled shapes for the lateral deflection and twist rotation are different for cantilever beams. In particular, the buckled shape for the twist rotation also varies with the section size. In light of these findings, the finite element flexural-torsional buckling analysis was then used to derive simple accurate equations for the elastic buckling load and moment for cantilever beams subjected to end point load, uniformly distributed load and end moment. The results are compared with previous research and it was found that the equations derived in this study are accurate and simple to use.

Analysis of Current Distribution on Cylinders with End Cap (끝단면에 ?을 갖는 원통주의 전류분포 해석)

  • 이강호;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.879-885
    • /
    • 1990
  • An intergral equation is derived for surface current distribution of cylinders with end cap using quasistatic approximation method. The moment method is applied for numerical solution. Point matching method using Cubic B-spline function as a basis function, delta function as a weighting function is applied for moment method. And also, the influencial relation in accordance with structural variation is analized in case of spheroidal end up cap type and flat type.

  • PDF

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

Analysis on the Current distribution and its Rodiating Electric Field of the arbitrary linear Antenna (임의의 선형 안테나의 전류분포와 그 복사전계해석)

  • 주창복
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.5 no.1
    • /
    • pp.76-82
    • /
    • 1980
  • In this paper, an arbitrary Iinear antenna is divided into many small sections and numeral analysis by moment method is carried out. So, the equation which is closed to the actual current distribution and solved easily compared with the induced-emf method or retarded potencial method is derived. The current distribution and radiating pattern of the three element Yagi antenna which applied the result is well in accord with the theoritical values.

  • PDF

A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency (고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

A Calculation of 1 Dimensional Blasting Pressure Uslng the Flux-Corrected Transport Algorithm (Flux-Corrected Transport Algorithm을 적용한 1차원 발파압력산정에 관한 연구)

  • 김문겸;오금호;이필규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.76-83
    • /
    • 1995
  • Estimation of blasting behavior of explosives is prerequisite in the numerical analysis of blasting works. In this study, blasting pressure is estimated by the finite difference method using the Flux-Corrected Transport Algorithm. To formulate the behavior of blasting gas, the mass conservation equation, the moment conservation equation, the energy conservation equation and the ideal gas state equation are used. The simplified species conservation equation is included to simulate the behavior of reacting explosives. To verify the calculation, the Sod's shock tube problem, the strong shock problem and the reacting problem we used. Numerical results show that the shock wave can be captured by means of the FCT algorithm in the reacting and nonreacting states.

  • PDF