• 제목/요약/키워드: Moment

검색결과 8,351건 처리시간 0.037초

넓은 범위의 힘/모멘트비를 갖는 3분력 힘/모멘트 센서 설계 (Design of 3-component Force/Moment Sensor with Force/Moment Ratio of Wide Range)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.214-221
    • /
    • 2001
  • This paper describes the design of 3-component force/moment sensor with the force and moment ratio of wide range. It can measure the x-direction force Fx, y-direction force Fy and z-direction moment Mz simultaneously. In order to accurately measure forces and moment using 3-component force/moment sensor, it should get suitable force and moment ratio(the ratio of force Fx=200 N and moment Mz=20 Nm is ten to one), and small interference error. In this paper, in order to design the 3-component force/moment sensor with the force and moment ratio of wide range, the procedures are performed as follow : 1) the derivation of the equations to predict the bending strains on the surfaces of the plate-beams under the force or the moments, 2) the determination of the size of the sensing elements of the force/moment sensor by using the derived equations, 3) the Finite Element Method(FEM) analysis and the characteristic test for confirming the strains from the theory analysis, 4) the selection of the attachment locations of the strain gages of each sensor, 5) the analysis of the rated strain and the interference error at the attachment location of strain gages. It reveals that the rated strains calculated from the derived equations make a good agreement with the results from the Finite Element Method analysis and the characteristic test.

  • PDF

Timber-FRP composite beam subjected to negative bending

  • Subhani, Mahbube;Globa, Anastasia;Moloney, Jules
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.353-365
    • /
    • 2020
  • In the previous studies, the authors proposed the use of laminated veneer lumber - carbon fiber reinforced polymer (LVL-CFRP) composite beams for structural application. Bond strength of the LVL-to-CFRP interface and flexural strengthening schemes to increase the bending capacity subjected to positive and negative moment were discussed in the previous works. In this article, theoretical models are proposed to predict the moment capacity when the LVL-CFRP beams are subjected to negative moment. Two common failure modes - CFRP fracture and debonding of CFRP are considered. The non-linear model proposed for positive moment is modified for negative moment to determine the section moment capacity. For the debonding based failure, previously developed bond strength model for CFRP-to-LVL interface is implemented. The theoretical models are validated against the experimental results and then use to determine the moment-rotation behaviour and rotational rigidity to compare the efficacy of various strengthening techniques. It is found that combined use of bi- and uni-directional CFRP U-wrap at the joint performs well in terms of both moment capacity and rotational rigidity.

배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화 (Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber)

  • 구인회;박진무
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

Improving Efficiency of the Moment Estimator of the Extreme Value Index

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • 제30권3호
    • /
    • pp.419-433
    • /
    • 2001
  • In this paper we introduce a method of improving efficiency of the moment estimator of Dekkers, Einmahl and de Haan(1989) for the extreme value index $\beta$. a new estimator of $\beta$ is proposed by adding the third moment ot the original moment estimator which is composed of the first two moments of the log-transformed sample data. We establish asymptotic normality of the new estimator and examine and adaptive procedure for the new estimator. The resulting adaptive estimator proves to be asymptotically better than the moment estimator particularly for $\beta$<0.

  • PDF

ON NONSINGULAR EMBRY QUARTIC MOMENT PROBLEM

  • Li, Chungji;Sun, Xiaoyun
    • 대한수학회보
    • /
    • 제44권2호
    • /
    • pp.337-350
    • /
    • 2007
  • Given a collection of complex numbers ${\gamma}{\equiv}\{{\gamma}ij\}$ $(0{\leq}i+j{\leq}2n,\;|i-j|{\leq}n)$ with ${\gamma}00>0\;and\;{\gamma}ji=\bar{\gamma}ij$, we consider the moment problem for ${\gamma}$ in the case of n=2, which is referred to Embry quartic moment problem. In this note we give a partial solution for the nonsingular case of Embry quartic moment problem.

Truncated Multi-index Sequences Have an Interpolating Measure

  • Choi, Hayoung;Yoo, Seonguk
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.107-118
    • /
    • 2022
  • In this note we observe that any truncated multi-index sequence has an interpolating measure supported in Euclidean space. It is well known that the consistency of a truncated moment sequence is equivalent to the existence of an interpolating measure for the sequence. When the moment matrix of a moment sequence is nonsingular, the sequence is naturally consistent; a proper perturbation to a given moment matrix enables us to confirm the existence of an interpolating measure for the moment sequence. We also illustrate how to find an explicit form of an interpolating measure for some cases.

BINARY TRUNCATED MOMENT PROBLEMS AND THE HADAMARD PRODUCT

  • Yoo, Seonguk
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.61-71
    • /
    • 2020
  • Up to the present day, the best solution we can get to the truncated moment problem (TMP) is probably the Flat Extension Theorem. It says that if the corresponding moment matrix of a moment sequence admits a rank-preserving positive extension, then the sequence has a representing measure. However, constructing a flat extension for most higher-order moment sequences cannot be executed easily because it requires to allow many parameters. Recently, the author has considered various decompositions of a moment matrix to find a solution to TMP instead of an extension. Using a new approach with the Hadamard product, the author would like to introduce more techniques related to moment matrix decompositions.

소성변형을 고려한 철도연속교의 강도해석 (The Strength Analysis of Railroad Continuous Bridge Considering Plastic Deformation)

  • 정경희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.556-561
    • /
    • 2005
  • The steel shows plastic deformation after the yield point exceeds. The plastic deformation due to overloads occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support and the permanence deformation at the interior support remains after loads apply. Because local yielding causes the positive moment at the interior support, it is called 'auto-moment'. Auto-moment redistributes the elastic moment. Because of redistribution, auto-moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the plastic rotation is evaluated using the moment-rotation curve proposed by Schalling and Beam-line method. Moreover, auto-moment is derived from the experiment curve.

  • PDF

Shape Recognition and Classification Based on Poisson Equation- Fourier-Mellin Moment Descriptor

  • Zou, Jian-Cheng;Ke, Nan-Nan;Lu, Yan
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, we present a new shape descriptor, which is named Poisson equation-Fourier-Mellin moment Descriptor. We solve the Poisson equation in the shape area, and use the solution to get feature function, which are then integrated using Fourier-Mellin moment to represent the shape. This method develops the Poisson equation-geometric moment Descriptor proposed by Lena Gorelick, and keeps both advantages of Poisson equation-geometric moment and Fourier-Mellin moment. It is proved better than Poisson equation-geometric moment Descriptor in shape recognition and classification experiments.