DOI QR코드

DOI QR Code

ON NONSINGULAR EMBRY QUARTIC MOMENT PROBLEM

  • Li, Chungji (INSTITUTE OF SYSTEM SCIENCE COLLEGE OF SCIENCES NORTHEASTERN UNIVERSITY) ;
  • Sun, Xiaoyun (INSTITUTE OF SYSTEM SCIENCE COLLEGE OF SCIENCES NORTHEASTERN UNIVERSITY)
  • Published : 2007.05.31

Abstract

Given a collection of complex numbers ${\gamma}{\equiv}\{{\gamma}ij\}$ $(0{\leq}i+j{\leq}2n,\;|i-j|{\leq}n)$ with ${\gamma}00>0\;and\;{\gamma}ji=\bar{\gamma}ij$, we consider the moment problem for ${\gamma}$ in the case of n=2, which is referred to Embry quartic moment problem. In this note we give a partial solution for the nonsingular case of Embry quartic moment problem.

Keywords

References

  1. R. Curto and L. A. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52 pp
  2. R. Curto, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56 pp
  3. R. Curto, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), no. 2, 315-354
  4. I. Jung, E. Ko, C. Li, and S. Park, Embry truncated complex moment problem, Linear Algebra and Appl. 375 (2003), 95-114 https://doi.org/10.1016/S0024-3795(03)00617-7
  5. C. Li, The singular Embry quartic moment problem, Hokkaido Math. J. 34 (2005), no. 3, 655-666 https://doi.org/10.14492/hokmj/1285766290
  6. C. Li and M. Cho, The quadratic moment matrix E(1), Sci. Math. Jpn. 57 (2003), no. 3, 559-567
  7. C. Li, I. Jung, and S. Park, Complex moment matrices via Halmos-Bram and Embry conditions, J. Korean Math. Soc., to appear https://doi.org/10.4134/JKMS.2007.44.4.949
  8. C. Li and S. Lee, The quartic moment problem, J. Korean Math. Soc. 42 (2005), no. 4, 723-747 https://doi.org/10.4134/JKMS.2005.42.4.723
  9. Wolfram Research, Inc. Mathematica, Version 4.1, Wolfram Research Inc., Champaign, IL, 2001