• 제목/요약/키워드: Molybdenum Thin Film

검색결과 49건 처리시간 0.028초

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • 강준구;나세권;최주윤;이석희;김형섭;이후정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF

다양한 조건의 플라즈마 원자층 증착법으로 증착된 Mo 금속의 전기적 특성 (Electrical Properties of Molybdenum Metal Deposited by Plasma Enhanced - Atomic Layer Deposition of Variation Condition)

  • 임태완;장효식
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.715-719
    • /
    • 2019
  • Molybdenum is a low-resistivity transition metal that can be applied to silicon devices using Si-metal electrode structures and thin film solar cell electrodes. We investigate the deposition of metal Mo thin film by plasma-enhanced atomic layer deposition (PE-ALD). $Mo(CO)_6$ and $H_2$ plasma are used as precursor. $H_2$ plasma is induced between ALD cycles for reduction of $Mo(CO)_6$ and Mo film is deposited on Si substrate at $300^{\circ}C$. Through variation of PE-ALD conditions such as precursor pulse time, plasma pulse time and plasma power, we find that these conditions result in low resistivity. The resistivity is affected by Mo pulse time. We can find the reason through analyzing XPS data according to Mo pulse time. The thickness uniformity is affected by plasma power. The lowest resistivity is $176{\mu}{\Omega}{\cdot}cm$ at $Mo(CO)_6$ pulse time 3s. The thickness uniformity of metal Mo thin film deposited by PE-ALD shows a value of less than 3% below the plasma power of 200 W.

Physicochemical Characterization of Mo Films at Various Oxygen Ratio

  • 빈준형;박주연;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.88-88
    • /
    • 2010
  • We synthesized molybdenum thin films deposited by RF magnetron sputtering and physicochemical analysis was performed. The physical and chemical properties of these films were examined with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The obtained film at the oxygen ratio of 0% showed crystallinity of cubic Mo(110) phase. After the oxygen ratio increased more than 5% in the sputter gas, the molybdenum films were formed as an amorphous phase. The thickness of the Mo thin film was drastically decreased from 1000 nm to ca 70 nm after introduction of oxygen in the sputter gas confirmed by spectroscopic ellipsometer (SE) and scanning electron spectroscopy (SEM). The calculated band gap of the film deduced from SE data increased from 3.17 to 3.63 eV by addition of oxygen in the sputter gas. The roughness of the Mo film was examined with atomic force microscopy (AFM) and it was dramatically decreased by introducing of oxygen during sputtering. XPS results revealed that the ratio of metallic Mo species in the film decreased by the contents of Mo(VI) species increased at the ratio of oxygen increased in the sputter gas and fully oxidized at low content of oxygen in the sputter gas.

  • PDF

Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작 (Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems)

  • 강유리;김용국;김수원;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

CIS 태양전지용 이원 화합물 $Cu_xSe$ 나노입자를 이용한 $Cu_xSe$ 박막 제조 (Fabrication of $Cu_xSe$ thin films by selenization of $Cu_xSe$ nanoparticles prepared by a colloidal process)

  • 김균환;안세진;윤재호;곽지혜;김도진;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.96-98
    • /
    • 2009
  • This report summarizes our recent efforts to produce large-grained CIGS materials from porous nanoparticle thin films. In our approach, a $Cu_xSe$ nanoparticle colloid were first prepared by reacting a mixture of CuI in pyridine with $Na_2Se$ in methanol at reduced temperature. purified colloid was sprayed onto heated molybdenum-coated sodalime glass substrates to form thin film. After thermal processing of the thin film under a selenium ambient. $Cu_xSe$ colloid and thin film were characterized by scanning electron microscopy, x-ray diffraction. The optical(direct) band gap energy of $Cu_xSe$ thin films is 1.5 eV.

  • PDF

Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구 (A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process)

  • 유종수;윤성만;김도진;조정대
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Mo기판 위에 sputtering 법으로 성장된 Si 박막의 결정화 연구 (The study of crystallization to Si films deposited using a sputtering method on a Mo substrate)

  • 김도영;고재경;박중현;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.36-39
    • /
    • 2002
  • Polycrystalline silicon (poly-Si) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays (AMLCD), allowing the integration of both active matrix and driving circuit on the same substrate (normally glass). As high temperature process is not used for glass substrate because of the low softening points below 450$^{\circ}C$. However, high temperature process is required for getting high crystallization volume fraction (i.e. crystallinity). A poly-Si thin film transistor has been fabricated to investigate the effect of high temperature process on the molybdenum (Mo) substrate. Improve of the crystallinity over 75% has been noticed. The properties of structural and electrical at high temperature poly-Si thin film transistor on Mo substrate have been also analyzed using a sputtering method

  • PDF

MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조 (Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS)

  • 조태선;김세훈;김영도
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

박막트랜지스터 응용을 위한 고온 결정화된 다결정실리콘의 특성평가 (The Characteristics of High Temperature Crystallized Poly-Si for Thin Film Transistor Application)

  • 김도영;심명석;서창기;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권5호
    • /
    • pp.237-241
    • /
    • 2004
  • Amorphous silicon (a-Si) films are used in a broad range of solar cell, flat panel display, and sensor. Because of the greater ease of deposition and lower processing temperature, thin films are widely used for thin film transistors (TFTs). However, they have lower stability under the exposure of visible light and because of their low field effect mobility ($\mu$$_{FE}$ ) , less than 1 c $m^2$/Vs, they require a driving IC in the external circuits. On the other hand, polycrystalline silicon (poly-Si) thin films have superiority in $\mu$$_{FE}$ and optical stability in comparison to a-Si film. Many researches have been done to obtain high performance poly-Si because conventional methods such as excimer laser annealing, solid phase crystallization and metal induced crystallization have several difficulties to crystallize. In this paper, a new crystallization process using a molybdenum substrate has been proposed. As we use a flexible substrate, high temperature treatment and roll-to-roll process are possible. We have used a high temperature process above 75$0^{\circ}C$ to obtain poly-Si films on molybdenum substrates by a rapid thermal annealing (RTA) of the amorphous silicon (a-Si) layers. The properties of high temperature crystallized poly-Si studied, and poly-Si has been used for the fabrication of TFT. By this method, we are able to achieve high crystal volume fraction as well as high field effect mobility.

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF