DOI QR코드

DOI QR Code

Electrical Properties of Molybdenum Metal Deposited by Plasma Enhanced - Atomic Layer Deposition of Variation Condition

다양한 조건의 플라즈마 원자층 증착법으로 증착된 Mo 금속의 전기적 특성

  • Lim, Taewaen (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • 임태완 (충남대학교 에너지기술과학 대학원) ;
  • 장효식 (충남대학교 에너지기술과학 대학원)
  • Received : 2019.10.16
  • Accepted : 2019.10.22
  • Published : 2019.11.27

Abstract

Molybdenum is a low-resistivity transition metal that can be applied to silicon devices using Si-metal electrode structures and thin film solar cell electrodes. We investigate the deposition of metal Mo thin film by plasma-enhanced atomic layer deposition (PE-ALD). $Mo(CO)_6$ and $H_2$ plasma are used as precursor. $H_2$ plasma is induced between ALD cycles for reduction of $Mo(CO)_6$ and Mo film is deposited on Si substrate at $300^{\circ}C$. Through variation of PE-ALD conditions such as precursor pulse time, plasma pulse time and plasma power, we find that these conditions result in low resistivity. The resistivity is affected by Mo pulse time. We can find the reason through analyzing XPS data according to Mo pulse time. The thickness uniformity is affected by plasma power. The lowest resistivity is $176{\mu}{\Omega}{\cdot}cm$ at $Mo(CO)_6$ pulse time 3s. The thickness uniformity of metal Mo thin film deposited by PE-ALD shows a value of less than 3% below the plasma power of 200 W.

Keywords

References

  1. K. A. Gesheva, T. A. krisov, U. I. Simkov and G. D. Beshkov, Appl. surf. Sci., 73, 86 (1993). https://doi.org/10.1016/0169-4332(93)90150-A
  2. R. W. Johnson, A. Hultqvist and S. F. Bent, Mater. Today, 17, 236 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
  3. J. Hamalainen, M. Ritala, and M. Leskela, Chem. Mater., 26, 786 (2013). https://doi.org/10.1021/cm402221y
  4. W.-M. Li, Chem. Vapor Deposition, 19, 82 (2013). https://doi.org/10.1002/cvde.201300052
  5. H. Kim and I. K. Oh, Jpn. J. Appl. Phys., 53, 03DA01 (2014). https://doi.org/10.7567/JJAP.53.03DA01
  6. G. Di Giuseppe, J. Robert Selman, J. Electroanal. Chem., 559, 31 (2003). https://doi.org/10.1016/S0022-0728(03)00392-9
  7. K. Yasuda and J. Murota, Jpn. J. Appl. Phys., 22, L615 (1983). https://doi.org/10.1143/JJAP.22.L615
  8. F. Werfel and E. Minni, J. Phys. C. Solid State Phys., 16, 6091 (1983). https://doi.org/10.1088/0022-3719/16/31/022
  9. R. Liu, X. Yu, G. Zhang, S. Zhang, H. Cao, Anne Dolbecq, P. Mialane, B. Keita and L. Zhi, J. Mater. Chem., 1, 11961 (2013). https://doi.org/10.1039/c3ta12941a
  10. L. Liu, W. Zhang, P. Guo, K. Wang, J. Wang, H. Qian, I. Kurash, C. H. Wang, Y. W. Yang, and F. Xu, Phys. Chem. Chem. Phys., 17, 3463 (2015). https://doi.org/10.1039/C4CP04199B