• Title/Summary/Keyword: Molten salt corrosion

Search Result 62, Processing Time 0.022 seconds

Corrosion Behavior of Ni 200 and Ni-base Alloys in Hot Lithium Molten salt (고온 리튬용융염에서 Ni 200 및 Ni-base 합금의 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Yun Ki-Seok;Park Seung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.251-259
    • /
    • 2004
  • In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. Corrosion behavior of Ni 200 and Ni-base alloys in molten salt of LiCl-$Li_2$O under oxidation atmosphere was investigated in the temperature range of $650~800^{\circ}C$ for 24~312 hrs. The order of corrosion rate was Ni 200 > Inconel 690 > Inconel 601 > Inconel 600. Inconel 600 alloy showed the highest corrosion resistance among the examined alloys, but Ni 200 exhibited the highest corrosion rate. Corrosion products of Inconel 600 and Inconel 601 were $Cr_2$$O_3$ and $NiFe_2$$O_4$. In case of Inconel 690, a single layer of $CrO_2$$O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2$O$_4$ and inner layer of $Cr_2$$O_3$ were formed with increase of corrosion time. Inconel 600 showed local corrosion behavior and Inconel 601, 690 showed uniform corrosion behavior.

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

A Study on the Corrosion Behavior of Austenitic Stainless Steel in Hot Molten Salt (오스테나이트 스테인레스강의 고온용융염 부식거동연구)

  • Jo, Su-Haeng;Park, Sang-Cheol;Jeong, Myeong-Su;Jang, Jun-Seon;Sin, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.211-216
    • /
    • 1999
  • Corrosion behavior of austenitic stainless steels of SUS 316L and SUS304L in molten salt of LiCl and $LiCl/Li_2O$ has been investigated in the temperature range of $650~850^{\circ}C$. Corrosion products of SUS316L and 304L in hot molten salt consisted of two layers-an outer layer of Li(CrFe)$O_2$and an inner layer of$Cr_2O_3$. The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl/$Li_2O$. The corrosion rate increased slowly with the increase of temperature up to $750^{\circ}C$, but above $750^{\circ}C$ rapid increase in corrosion rate observed. SUS316L stainless steel showed slower corrosion rate than SUS 304L, exhibiting higher corrosion resistance in the molten salt.

  • PDF

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 Al-Y 코팅한 Haynes 263의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.

Effect of Si Content and RE Addition on Molten Salt Corrosion and High Temperature Oxidation of the Austenite Alloys (오스테나이트 합금의 용융염부식 및 고온산화에 미치는 Si 농도와 RE 첨가의 영향)

  • Jo, Su-Haeng;Jang, Jun-Seon;O, Seung-Cheol;Sin, Yeong-Jun;Park, Seong-Won
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.3-9
    • /
    • 2002
  • The corrosion behavior of alloys in a molten salt was investigated along with the oxidation characteristics in the air. The basic composition of alloys in the study was Fe-25Ni-7Cr with Si and RE(rare-earth metal) as additives. The corrosion rate of the alloys was low in a molten salt of LiCl while the rate was high in the mixed molten salt of LiCl and $Li_2O$. When Si is added to the base alloy of Fe-25Ni-7Cr, corrosion resistance was improved as the Si content is increased up to 3%, however, it was observed that the corrosion resistance was getting worse as the Si content is increased. The base alloy with 2.43% of Si and 0.9% of RE(KSA-65), showed higher corrosion rate compared to that of KSA-63 alloy with an equivalent amount of only Si. The corrosion resistance of KSA-65 was similar to that of the base alloy(KSA-60). The oxidation resistance of KSA-65 alloy was greatly increased even at $850^{\circ}C$ for a long term exposure.

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Corrosion Behavior of Pyro-Carbon in Hot Lithium Molten Salt Under an Oxidation Atmosphere (산화성 고온 리튬용융염계 분위기에서 Pyro-Carbon의 부식거동)

  • Lim, Jong-Ho;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.123-127
    • /
    • 2013
  • The electrolytic reduction of a spent oxide fuel involves liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too crosive for typical structural materials. Therefore, it is essential to choose the optimum material for the process equipment for handling a molten salt. In this study, the corrosion behavior of pyro-carbon made by CVD was investigated in a molten LiCl-$Li_2O$ salt under an oxidation atmosphere at $650^{\circ}C$ and $750^{\circ}C$ for 72 hours. Pyro-carbon showed no chemical reactions with the molten salt because of its low wettability between pyro-carbon and the molten salt. As a result of XRD analysis, pyro-carbon exposed to the molten salt showed pure graphite after corrosion tests. As a result of TGA, whereas the coated layer by CVD showed high anti-oxidation, the non-coated layer showed relatively low anti-oxidation. The stable phases in the reactions were $C_{(S)}$, $Li_2CO_{3(S)}$, $LiCl_{(l)}$, $Li_2O$ at $650^{\circ}C$ and $C_{(S)}$, $LiCl_{(l)}$, $Li_2O_{(S)}$ at $750^{\circ}C$. $Li_2CO_{(S)}$ was decomposed at $750^{\circ}C$ into $Li_2O_{(S)}$ and $CO_{2(g)}$.

Corrosion Behavior and Effect of Alloying Elements of Fe-base and Ni-base Superalloys on Hot Molten Salt (고온 용융염에서 Fe기 및 Ni기 초합금의 부식거동 및 합금원소의 영향)

  • Jo, Su-Haeng;Jang, Jun-Seon;Jeong, Myeong-Su;O, Seung-Cheol;Sin, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.985-991
    • /
    • 1999
  • Corrosion behaviors of Incoloy 800H, KSA(Kaeri Superalloy)-6, Inconel 600 and Hastelloy C-276 in molten salts were investigated in the temperature range of 650 ~ $850^{\circ}C$. Due to $\textrm{Li}_{2}\textrm{O}$-induced basic fluxing mechanism, the corrosion rates of the alloys in mixed molten salt of LiC1-$\textrm{Li}_{2}\textrm{O}$ were significantly higher than those in molten salt of LiCl. In the mixed molten salt, Fe-base alloys showed higher corrosion resistance than the Ni-base alloys. and Hastelloy C-276 with high Mo and W contents exhibited the highest corrosion rate among the examined alloys. The single layer of $\textrm{LiCrO}_{2}$ was formed in molten salt of LiCl and two phase structure of a scale consisted of oxides and Ni was formed in the mixed molten salt.

  • PDF

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.