Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.4.251

Corrosion Behavior of Ni 200 and Ni-base Alloys in Hot Lithium Molten salt  

Cho Soo-Hang (한국원자력연구소)
Lim Jong-Ho (한국원자력연구소)
Yun Ki-Seok (한국원자력연구소)
Park Seung-Won (한국원자력연구소)
Publication Information
Korean Journal of Materials Research / v.14, no.4, 2004 , pp. 251-259 More about this Journal
Abstract
In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. Corrosion behavior of Ni 200 and Ni-base alloys in molten salt of LiCl-$Li_2$O under oxidation atmosphere was investigated in the temperature range of $650~800^{\circ}C$ for 24~312 hrs. The order of corrosion rate was Ni 200 > Inconel 690 > Inconel 601 > Inconel 600. Inconel 600 alloy showed the highest corrosion resistance among the examined alloys, but Ni 200 exhibited the highest corrosion rate. Corrosion products of Inconel 600 and Inconel 601 were $Cr_2$$O_3$ and $NiFe_2$$O_4$. In case of Inconel 690, a single layer of $CrO_2$$O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2$O$_4$ and inner layer of $Cr_2$$O_3$ were formed with increase of corrosion time. Inconel 600 showed local corrosion behavior and Inconel 601, 690 showed uniform corrosion behavior.
Keywords
Molten salt corrosion; High temperature corrosion; Molten salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Haffe, Oxidation of Metals, p. 19, Plenum press, (1965)
2 R. K. Johnston, The Oxide Handbook, p. 24 IFI/Plenum, G. V. Samsonov, (1982)
3 U. R. Evans, 'An Introduction to Metallic Corrosion', Edward Amold, London (1948)
4 E. T. Turkdogan, 'Physical Chemistry of High temperature Technology', Academic Press, New York (1980)
5 H. Izuta and Y. Komura, Journal of the Japan institute of metals, 58, 1196 (1994)
6 Y. Harada, J. of Jap. Thermal Spraying Soc., 33, 128 (1996)
7 H. R. Copson, J. Electrochem. Soc., 100, 257 (1953)   DOI
8 M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros. Sci., 39, 1193 (1997)   DOI   ScienceOn
9 F. Colom andf A. Bodalo, Corros, Sci., 12, 73 (1972)
10 K. Fueki and J. Bruce Wagner, Trans. Electrochem. Soc., 112, 384 (1965)   DOI
11 S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990)   DOI
12 M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)
13 A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
14 D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS 37, U.S. Department of Commerce, Washington, D.C., (1971)
15 F. J. Kohl, G. J. Santoro, C. A. Steams, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979)   DOI
16 S. Kameswari, Oxid. met., 26, 33 (1973)   DOI
17 S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met., 40, 180 (1993)   DOI
18 G. C. Wood, Corros, Sci.,, 12, 173 (1962)   DOI   ScienceOn
19 S. Sarioglu, J. R. Blachere, F. S. Pettit, G. H. Meier, J. L. Smialek and C. Mennicke, Mater. Sci. Forum, 251-254, 405 (1997)
20 H. H. Kellogg, J. Chem. Eng. Data, 14, 41, (1969)   DOI