Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.2.123

Corrosion Behavior of Pyro-Carbon in Hot Lithium Molten Salt Under an Oxidation Atmosphere  

Lim, Jong-Ho (Heavy Plate R&D Team, HYUNDAI-STEEL Technical Research Center)
Choi, Jeong-Mook (Jinhap Co., Ltd.)
Publication Information
Korean Journal of Materials Research / v.23, no.2, 2013 , pp. 123-127 More about this Journal
Abstract
The electrolytic reduction of a spent oxide fuel involves liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too crosive for typical structural materials. Therefore, it is essential to choose the optimum material for the process equipment for handling a molten salt. In this study, the corrosion behavior of pyro-carbon made by CVD was investigated in a molten LiCl-$Li_2O$ salt under an oxidation atmosphere at $650^{\circ}C$ and $750^{\circ}C$ for 72 hours. Pyro-carbon showed no chemical reactions with the molten salt because of its low wettability between pyro-carbon and the molten salt. As a result of XRD analysis, pyro-carbon exposed to the molten salt showed pure graphite after corrosion tests. As a result of TGA, whereas the coated layer by CVD showed high anti-oxidation, the non-coated layer showed relatively low anti-oxidation. The stable phases in the reactions were $C_{(S)}$, $Li_2CO_{3(S)}$, $LiCl_{(l)}$, $Li_2O$ at $650^{\circ}C$ and $C_{(S)}$, $LiCl_{(l)}$, $Li_2O_{(S)}$ at $750^{\circ}C$. $Li_2CO_{(S)}$ was decomposed at $750^{\circ}C$ into $Li_2O_{(S)}$ and $CO_{2(g)}$.
Keywords
pyro-carbon; oxidation; hot corrosion; lithium molten salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. J. Kohl, G. J. Santoro, C. A. Stearns, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979).   DOI   ScienceOn
2 T. Ishitsuka and K. Nose, Corros. Sci., 44, 247 (2002).   DOI   ScienceOn
3 B. P. Mohanty and D. A. Shores, Corros. Sci. 46, 2893 (2004).   DOI   ScienceOn
4 M. Spiegel, P. Biedenkopf and H. J. Grabke, Corros. Sci., 39, 1193 (1997).   DOI   ScienceOn
5 S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990).   DOI
6 A. Ruh and M. Spiegel, Corros. Sci., 48, 679 (2006).   DOI   ScienceOn
7 H. R. Copson, J. Electrochem. Soc., 100, 257 (1953).   DOI
8 F. Colom andf A. Bodalo, Corros, Sci., 12, 731 (1972).   DOI   ScienceOn
9 X. Ren and F. Wang, Surf. Coat. Technol., 201, 30 (2006).   DOI   ScienceOn
10 M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Surf. Coat. Technol., 200, 3942 (2006).   DOI   ScienceOn
11 C. Batista, A. Portinha, R. M. Ribeiro, V. Teixeira and C. R. Oliveira, Surf. Coat. Technol., 200, 6783 (2006).   DOI   ScienceOn
12 E. T. Turkdogan, Physical Chemistry of High temperature Technology, p. 5-24, Academic Press, New York, USA (1980).