• Title/Summary/Keyword: Molecular targeted therapies

Search Result 67, Processing Time 0.024 seconds

The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields

  • Kim, Yong-Seok;Ahn, Jae-Sung;Kim, Semi;Kim, Hyun-Jin;Kim, Shin-Hee;Kang, Ju-Seop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.

Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting

  • Eun, Kiyoung;Ham, Seok Won;Kim, Hyunggee
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.117-125
    • /
    • 2017
  • Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a "cancer heterogeneity" due to "CSC plasticity". A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.

Overexpression and Selective Anticancer Efficacy of ENO3 in STK11 Mutant Lung Cancers

  • Park, Choa;Lee, Yejin;Je, Soyeon;Chang, Shengzhi;Kim, Nayoung;Jeong, Euna;Yoon, Sukjoon
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.804-809
    • /
    • 2019
  • Oncogenic gain-of-function mutations are clinical biomarkers for most targeted therapies, as well as represent direct targets for drug treatment. Although loss-of-function mutations involving the tumor suppressor gene, STK11 (LKB1) are important in lung cancer progression, STK11 is not the direct target for anticancer agents. We attempted to identify cancer transcriptome signatures associated with STK11 loss-of-function mutations. Several new sensitive and specific gene expression markers (ENO3, TTC39C, LGALS3, and MAML2) were identified using two orthogonal measures, i.e., fold change and odds ratio analyses of transcriptome data from cell lines and tissue samples. Among the markers identified, the ENO3 gene over-expression was found to be the direct consequence of STK11 loss-of-function. Furthermore, the knockdown of ENO3 expression exhibited selective anticancer effect in STK11 mutant cells compared with STK11 wild type (or recovered) cells. These findings suggest that ENO3-based targeted therapy might be promising for patients with lung cancer harboring STK11 mutations.

Targeted Therapy of Advanced Non-Small Cell Lung Cancer (비소세포폐암 환자의 표적 치료)

  • Yun-Gyoo Lee;Hyun-Il Gil;Soo Jeong Kim;Hyunjoo Lee;Heerim Nam;Soo-Youn Ham;Du-Young Kang
    • The Korean Journal of Medicine
    • /
    • v.99 no.2
    • /
    • pp.96-103
    • /
    • 2024
  • Lung cancer is the leading cause of cancer death in Republic of Korea. After their initial diagnosis, only 10-20% of patients with advanced non-small cell lung cancer (NSCLC) survive for 5 years of longer. Given enormous advances in therapeutics such as novel targeted therapies and immunotherapies, survival rates are improving for advanced patients with NSCLC; 5-year survival rates range from 15% to 50%, contingent upon the biomarker. Detection of the specific molecular alteration as biomarker is thus crucial for identifying subgroups of NSCLC that contain therpapeutically targetable oncogenic drivers. This review examines the process of diagnosing lung adenocarcinoma with dominant biomarkers in order to customize treatment with appropriate targeted therapy.

Antisense DNAs as Targeted Genetic Medicine to Treat Cancer

  • Chochung, Yoo-S.
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.

An experimental approach to study the function of mitochondria in cardiomyopathy

  • Chung, Youn Wook;Kang, Seok-Min
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.541-548
    • /
    • 2015
  • Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy.

Ultra-rare Disease and Genomics-Driven Precision Medicine

  • Lee, Sangmoon;Choi, Murim
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.42-45
    • /
    • 2016
  • Since next-generation sequencing (NGS) technique was adopted into clinical practices, revolutionary advances in diagnosing rare genetic diseases have been achieved through translating genomic medicine into precision or personalized management. Indeed, several successful cases of molecular diagnosis and treatment with personalized or targeted therapies of rare genetic diseases have been reported. Still, there are several obstacles to be overcome for wider application of NGS-based precision medicine, including high sequencing cost, incomplete variant sensitivity and accuracy, practical complexities, and a shortage of available treatment options.

Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes

  • Linder, Henry;Zhang, Yuping
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.411-430
    • /
    • 2019
  • Tumor development is driven by complex combinations of biological elements. Recent advances suggest that molecularly distinct subtypes of breast cancers may respond differently to pathway-targeted therapies. Thus, it is important to dissect pathway disturbances by integrating multiple molecular profiles, such as genetic, genomic and epigenomic data. However, missing data are often present in the -omic profiles of interest. Motivated by genomic data integration and imputation, we present a new statistical framework for pathway significance analysis. Specifically, we develop a new strategy for imputation of missing data in large-scale genomic studies, which adapts low-rank, structured matrix completion. Our iterative strategy enables us to impute missing data in complex configurations across multiple data platforms. In turn, we perform large-scale pathway analysis integrating gene expression, copy number, and methylation data. The advantages of the proposed statistical framework are demonstrated through simulations and real applications to breast cancer subtypes. We demonstrate superior power to identify pathway disturbances, compared with other imputation strategies. We also identify differential pathway activity across different breast tumor subtypes.

Engineered adult stem cells: a promising tool for anti-cancer therapy

  • Youngdong Choi;Hong Kyu Lee;Kyung-Chul Choi
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings.

Pathological Interpretation of Gastric Tumors in Endoscopic Submucosal Dissection (위암 및 위선종에서 내시경절제술 조직의 병리 판독)

  • Jung Yeon Kim
    • Journal of Digestive Cancer Research
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • Endoscopic submucosal dissection (ESD) is a minimally invasive and effective treatment for early gastric cancer. The criteria for determining the suitability and success of ESD have expanded, with changes in the histopathological classification of gastric carcinoma, including results from molecular research. Treatment methods have also diversified to include targeted therapies and immuno-oncology agents. To improve communication between clinicians and pathologists, it is crucial to understand the standardized diagnostic forms of gastric cancer. This study aims to examine the handling method of ESD specimens and describe the pathological findings of gastric tumors.