Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.10.153

An experimental approach to study the function of mitochondria in cardiomyopathy  

Chung, Youn Wook (Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine)
Kang, Seok-Min (Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine)
Publication Information
BMB Reports / v.48, no.10, 2015 , pp. 541-548 More about this Journal
Abstract
Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy.
Keywords
Cardiomyopathy; Heart; Mitochondria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lucas DT and Szweda LI (1998) Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 95, 510-514   DOI
2 Murphy E and Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88, 581-609   DOI
3 Brenner C and Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111, 1237-1247   DOI
4 Kwong JQ and Molkentin JD (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 21, 206-214   DOI
5 Huss JM and Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115, 547-555   DOI
6 Towbin JA and Bowles NE (2002) The failing heart. Nature 415, 227-233   DOI
7 Wagner JA, Weisman HF, Snowman AM, Reynolds IJ, Weisfeldt ML and Snyder SH (1989) Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues. Circ Res 65, 205-214   DOI
8 Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11, 376-381   DOI
9 Shipp JC, Opie LH and Challoner D (1961) Fatty acid and glucose metabolism in the perfused heart. Nature 189, 1018-1019   DOI
10 Bersin RM, Wolfe C, Kwasman M et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23, 1617-1624   DOI
11 Lewis JF, DaCosta M, Wargowich T and Stacpoole P (1998) Effects of dichloroacetate in patients with congestive heart failure. Clin Cardiol 21, 888-892   DOI
12 Arakawa K, Kudo T, Ikawa M et al (2010) Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to L-arginine infusion. C-11 acetate kinetics revealed by positron emission tomography. Circ J 74, 2702-2711   DOI
13 Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B and Walker UA (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151, 771-778   DOI
14 Konorev EA, Kennedy MC and Kalyanaraman B (1999) Cell-permeable superoxide dismutase and glutathione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: the role of reactive oxygen and nitrogen intermediates. Arch Biochem Biophys 368, 421-428   DOI
15 Fisher PW, Salloum F, Das A, Hyder H and Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111, 1601-1610   DOI
16 Abozguia K, Elliott P, McKenna W et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562-1569   DOI
17 Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J and Walker UA (2003) Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108, 2423-2429   DOI
18 Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66, 454-461   DOI
19 van der Vijgh WJ, van Velzen D, van der Poort JS et al (1988) Morphometric study of myocardial changes during doxorubicin-induced cardiomyopathy in mice. Eur J Cancer Clin Oncol 24, 1603-1608   DOI
20 Shenasa H, Calderone A, Vermeulen M et al (1990) Chronic doxorubicin induced cardiomyopathy in rabbits: mechanical, intracellular action potential, and beta adrenergic characteristics of the failing myocardium. Cardiovasc Res 24, 591-604   DOI
21 Kerr DS (2010) Treatment of mitochondrial electron transport chain disorders: a review of clinical trials over the past decade. Mol Genet Metab 99, 246-255   DOI
22 Gurlek A, Tutar E, Akcil E et al (2000) The effects of L-carnitine treatment on left ventricular function and erythrocyte superoxide dismutase activity in patients with ischemic cardiomyopathy. Eur J Heart Fail 2, 189-193   DOI
23 Singh RB, Niaz MA, Rastogi V and Rastogi SS (1998) Coenzyme Q in cardiovascular disease. J Assoc Physicians India 46, 299-306
24 Buyse GM, Van der Mieren G, Erb M et al (2009) Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur Heart J 30, 116-124   DOI
25 Zhang M, Wei J, Shan H et al (2013) Calreticulin-STAT3 signaling pathway modulates mitochondrial function in a rat model of furazolidone-induced dilated cardiomyopathy. PLoS One 8, e66779   DOI
26 Lagedrost SJ, Sutton MS, Cohen MS et al (2011) Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 161, 639-645 e631   DOI
27 Rizos I (2000) Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J 139, S120-123   DOI
28 Hajjar RJ, Liao R, Young JB, Fuleihan F, Glass MG and Gwathmey JK (1993) Pathophysiological and biochemical characterisation of an avian model of dilated cardiomyopathy: comparison to findings in human dilated cardiomyopathy. Cardiovasc Res 27, 2212-2221   DOI
29 Armstrong PW, Stopps TP, Ford SE and de Bold AJ (1986) Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 74, 1075-1084   DOI
30 Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y and Carabello BA (1990) Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol 259, H218-229
31 Ide T, Tsutsui H, Kinugawa S et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85, 357-363   DOI
32 Melov S, Coskun P, Patel M et al (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci U S A 96, 846-851   DOI
33 Lefrak EA, Pitha J, Rosenheim S and Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32, 302-314   DOI
34 Vicart P, Caron A, Guicheney P et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20, 92-95   DOI
35 Gilladoga AC, Manuel C, Tan CT, Wollner N, Sternberg SS and Murphy ML (1976) The cardiotoxicity of adriamycin and daunomycin in children. Cancer 37, 1070-1078   DOI
36 Takemura G and Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49, 330-352   DOI
37 Sawyer DB (2013) Anthracyclines and heart failure. N Engl J Med 368, 1154-1156   DOI
38 Wang X, Osinska H, Dorn GW 2nd et al (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103, 2402-2407   DOI
39 Maloyan A, Sanbe A, Osinska H et al (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112, 3451-3461   DOI
40 Badorff C, Lee GH, Lamphear BJ et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5, 320-326   DOI
41 Feng J, Yan J, Buzin CH, Towbin JA and Sommer SS (2002) Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 77, 119-126   DOI
42 Vatta M, Stetson SJ, Perez-Verdia A et al (2002) Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359, 936-941   DOI
43 Paulin D, Huet A, Khanamyrian L and Xue Z (2004) Desminopathies in muscle disease. J Pathol 204, 418-427   DOI
44 Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ and Des Rosiers C (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43, 119-129   DOI
45 Nakayama H, Chen X, Baines CP et al (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117, 2431-2444   DOI
46 Engel AG (1999) Myofibrillar myopathy. Ann Neurol 46, 681-683   DOI
47 Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283, 1476-1481   DOI
48 Fosslien E (2003) Review: Mitochondrial medicine--cardiomyopathy caused by defective oxidative phosphorylation. Ann Clin Lab Sci 33, 371-395
49 Wang J, Wilhelmsson H, Graff C et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21, 133-137   DOI
50 Li H, Wang J, Wilhelmsson H et al (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci U S A 97, 3467-3472   DOI
51 Wisneski JA, Gertz EW, Neese RA and Mayr M (1987) Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 79, 359-366   DOI
52 Stanley WC and Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7, 115-130   DOI
53 Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR and Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16, 226-234   DOI
54 Stanley WC, Lopaschuk GD, Hall JL and McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33, 243-257   DOI
55 Shirihai OS, Song M and Dorn GW 2nd (2015) How Mitochondrial Dynamism Orchestrates Mitophagy. Circ Res 116, 1835-1849   DOI
56 Ashrafian H, Docherty L, Leo V et al (2010) A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 6, e1001000   DOI
57 Archer SL (2013) Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251   DOI
58 Song M, Mihara K, Chen Y, Scorrano L and Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21, 273-285   DOI
59 Chen Y and Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471-475   DOI
60 Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS and Dorn GW 2nd (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115, 348-353   DOI
61 Chen Y, Liu Y and Dorn GW 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109, 1327-1331   DOI
62 Kubli DA and Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111, 1208-1221   DOI
63 Papanicolaou KN, Kikuchi R, Ngoh GA et al (2012) Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res 111, 1012-1026   DOI
64 Chen L, Liu T, Tran A et al (2012) OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J Am Heart Assoc 1, e003012   DOI
65 Song M and Dorn GW 2nd (2015) Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab 21, 195-205   DOI
66 Delbridge LM, Mellor KM, Taylor DJ and Gottlieb RA (2015) Myocardial autophagic energy stress responses--macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 308, H1194-1204   DOI
67 Hoppel CL, Tandler B, Parland W, Turkaly JS and Albers LD (1982) Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 257, 1540-1548
68 D'Angelo DD, Sakata Y, Lorenz JN et al (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94, 8121-8126   DOI
69 Sakata Y, Hoit BD, Liggett SB, Walsh RA and Dorn GW 2nd (1998) Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 97, 1488-1495   DOI
70 Yussman MG, Toyokawa T, Odley A et al (2002) Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8, 725-730   DOI
71 Shin G, Sugiyama M, Shoji T, Kagiyama A, Sato H and Ogura R (1989) Detection of mitochondrial membrane damages in myocardial ischemia with ESR spin labeling technique. J Mol Cell Cardiol 21, 1029-1036   DOI
72 Syed F, Odley A, Hahn HS et al (2004) Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95, 1200-1206   DOI
73 Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN and Dorn GW 2nd (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117, 396-404   DOI
74 Dorn GW 2nd (2010) Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3, 374-383   DOI
75 Palmer JW, Tandler B and Hoppel CL (1985) Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys 236, 691-702   DOI
76 Lauritzen KH, Kleppa L, Aronsen JM et al (2015) Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol 309, H434-449   DOI
77 Sligh JE, Levy SE, Waymire KG et al (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97, 14461-14466   DOI
78 Baba A, Yoshikawa T, Fukuda Y et al (2004) Autoantibodies against M2-muscarinic acetylcholine receptors: new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J 25, 1108-1115   DOI
79 Fu ML, Schulze W, Wallukat G, Hjalmarson A and Hoebeke J (1995) Functional epitope analysis of the second extracellular loop of the human heart muscarinic acetylcholine receptor. J Mol Cell Cardiol 27, 427-436   DOI
80 Fu LX, Magnusson Y, Bergh CH et al (1993) Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest 91, 1964-1968   DOI
81 Zhang S, He Z, Wang J et al (2015) Mitochondrial Ultrastructural Alterations and Declined M2 Receptor Density Were Involved in Cardiac Dysfunction in Rats after Long Term Treatment with Autoantibodies against M2 Muscarinic Receptor. PLoS One 10, e0129563   DOI
82 Yoshizawa A, Nagai S, Baba Y et al (2012) Autoimmunity against M(2)muscarinic acetylcholine receptor induces myocarditis and leads to a dilated cardiomyopathy-like phenotype. Eur J Immunol 42, 1152-1163   DOI
83 Palmer JW, Tandler B and Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252, 8731-8739
84 Cecchi F, Tomberli B and Olivotto I (2012) Clinical and molecular classification of cardiomyopathies. Glob Cardiol Sci Pract 2012, 4   DOI
85 Ozawa T (1994) Mitochondrial cardiomyopathy. Herz 19, 105-118, 125
86 Stanley WC and Hoppel CL (2000) Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 45, 805-806   DOI
87 Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J and Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol 33, 1065-1089   DOI
88 Recchia FA and Lionetti V (2007) Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 31 Suppl 1, 35-41   DOI
89 Ikeda Y and Ross J Jr. (2000) Models of dilated cardiomyopathy in the mouse and the hamster. Curr Opin Cardiol 15, 197-201   DOI
90 Benjamin IJ and Schneider MD (2005) Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 115, 495-499   DOI
91 Wallace DC and Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12-31   DOI
92 Winnik S, Auwerx J, Sinclair DA and Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J [Epub ahead of print]
93 Ryu D, Jo YS, Lo Sasso G et al (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20, 856-869   DOI
94 Roh JI, Cheong C, Sung YH et al (2014) Perturbation of NCOA6 leads to dilated cardiomyopathy. Cell Rep 8, 991-998   DOI
95 Walters AM, Porter GA Jr. and Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111, 1222-1236   DOI
96 Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125, e2-e220   DOI
97 Ambrosio G, Zweier JL, Duilio C et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268, 18532-18541