• 제목/요약/키워드: Molecular memory

검색결과 163건 처리시간 0.034초

Expression and Function of TLR2 on CD4 Versus CD8 T Cells

  • Lee, Sun-Mi;Joo, Young-Don;Seo, Su-Kil
    • IMMUNE NETWORK
    • /
    • 제9권4호
    • /
    • pp.127-132
    • /
    • 2009
  • Background: Toll-like receptors (TLRs) play a fundamental role in innate immunity through their capacity to recognize pathogen-associated molecular patterns. Also, TLRs that are expressed in T cells are reported to function as co-stimulatory receptors. However, the functional capacity of TLRs on CD4 T and CD8 T cells has not been directly compared. Here we compared CD4 and CD8 T cell responses to TLR2 ligand plus TCR-mediated stimulation. Methods: TLR2 expression was analyzed on T cell subsets under naive and alloantigen-primed conditions. We analyzed the effects of TLR2 co-stimulation on proliferation and survival of T cell subsets in vitro when stimulated with soluble anti-CD3 in the presence or absence of synthetic ligand $Pam_3CSK_4$. Results: TLR2 expression on CD8 T cells was induced following activation; this expression was much higher than on CD4 T cells. Thus, the molecule was constitutively expressed on Listeriaspecific memory CD8 T cells. Based on these expression levels, proliferation and survival were markedly elevated in CD8 T cells in response to the TLR2 co-stimulation by $Pam_3CSK_4$ compared with those in CD4 T cells. Conclusion: Our data show that TLR2 co-stimulation is more responsible for proliferation and survival of CD8 T cells than for that of CD4 T cells.

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • 만민탄;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF

전기경련충격시 경쟁적 역전사 중합효소연쇄반응(CRT-PCR)을 이용한 흰쥐 뇌 c-fos 유전자의 발현 양식 분석 (Quantitative RT-PCR for Measuring C-fos Gene Expression in Rat Brain after ECS)

  • 양병환;이제욱;박응철;유재학;조광원;양보기;채영규
    • 생물정신의학
    • /
    • 제3권2호
    • /
    • pp.181-190
    • /
    • 1996
  • To clarify the mechanism of action of electroconvulsive shack(ECS) in respect to molecular biology, and to detect the quantitative amount of change of c-fos gene expression after ECS in the rat's brain, the authors obtained brain specimens from the striatum, cerebral cortex, hippocampus, and cerebellum. Each brain was removed within 30min. after ECS(130V, 0.5sec) and ECS-sham. Then we performed RT-PCR. The results are 1) ECS was found to affect the expression of immediate early genes. 2) the cerebral cortex and hippocampus was more influenced by ECS thon in the cerebellum and striatum. From these results, we can suggest that ECS is related to the mechanism of cognition, mood, memory which is correlated to cerebral cortex and hippocampus.

  • PDF

모성 및 사회성 분리 백서 모델의 해마에서 유전자 칩을 이용한 유전자 발현 연구 (Microarray Analysis of Gene Expression in Rat Hippocampus of Maternal Social Separation Model)

  • 이희제;손창희;곽형렬;이상현;한윤희;김수영;박종익;전완주;김성수
    • 생물정신의학
    • /
    • 제13권2호
    • /
    • pp.110-116
    • /
    • 2006
  • Objectives : Alteration of hippocampus was demonstrated in the maternal social separation(MSS) pups, separated from dams on postnatal day(pnd) 14 and placed alone. Therefore, to understand the molecular events involved in the MSS, we have initiated a search for gene profiles that are up or down-regulated in the hippocampus of MSS pups. Methods : Analysis of cDNA microarray was performed by using total RNA extracted from the hippocampus of control and MSS pups on pnd 17. Also, passive-avoidance test was demonstrated on pnd 35. Results : Up-regulation of Nedd4a was observed in the hippocampus of MSS pups. Also, MSS rats showed less elongation of latency in passive avoidance test. Conclusion : We suggest that environmental effects of MSS may be altered the neural and/or glial differentiation and synapse formation-related genes which may lead cognitive alterations in MSS rats.

  • PDF

Toxic Levels of Amyloid Beta Peptide Do Not Induce VEGF Synthesis

  • Park, Sun-Young;Chae, Chi-Bom
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.69-75
    • /
    • 2007
  • Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide ($A{\beta}$) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing $H_2O_2$. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and $H_2O_2$ is one of the factors that induce VEGF. Therefore, we tested whether $A{\beta}$ might be responsible for the increased VEGF synthesis. We found that $A{\beta}$ induced the production of $H_2O_2$ in vitro. Comparison of the amount of $H_2O_2$ required to induce VEGF synthesis in HN33 cells and the amount of $H_2O_2$ produced by $10{\mu}M\;A{\beta}_{1-42}$ in vitro suggested that a toxic concentration of $A{\beta}$ might induce VEGF synthesis in these cells. However, toxic concentrations of $A{\beta}$ failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. $Cu^{2+}$, $Zn^{2+}$ and $Fe^{3+}$ are known to accumulate in the brains of AD patients and promote aggregation of $A{\beta}$, and $Cu^{2+}$ by itself induces synthesis of VEGF. However, there was no synergistic effect between $Cu^{2+}$ and $A{\beta}_{1-42}$ in the induction of VEGF synthesis and $Zn^{2+}$ and $Fe^{3+}$ also had no effect on the synthesis of VEGF, alone or in combination with $A{\beta}$.

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

전자파에 노출된 생쥐에서 운동량에 따른 뇌의 유전자 변화 (The Gene Expression Level Differences associated with Exercise in the Mouse Brain exposed to Radiofrequency Radiation)

  • 이민선
    • 디지털융복합연구
    • /
    • 제18권1호
    • /
    • pp.241-247
    • /
    • 2020
  • 전자파 노출이 자발운동에 따른 뇌의 유전자 발현에 미치는 영향을 10 주간 4그룹 즉, 정상 그룹, 자발운동 그룹, 전자파 노출 그룹, 전자파 노출 및 자발운동 그룹으로 나누어 조사하였다. 선조체(striata)와 시상하부(hypothalamus)에서 RT-PCR을 수행하였으며, 타이로신수산화효소(TH), FoxO3a, AMPKα, mRNA 발현을 조사하였다. 선조체에서 TH mRNA 발현은 자발운동과 전자파 노출 조건에서 각각 감소하였고, 전자파 노출 및 자발운동 그룹에서 더 많이 감소되었다. 이 결과는 전자파 노출 및 자발운동 그룹에서의 운동량 감소가 선조체에서 도파민이 감소할 수 있음을 시사한다. 선조체에서 FoxO3a mRNA 발현은 자발운동 그룹에서 증가했지만, 전자파 노출 및 자발운동 그룹은 현저히 감소했다. 시상하부에서는 TH mRNA 유전자 발현은 전자파 노출을 받은 자발운동 그룹에서 감소가 유의했으며, FoxO3a mRNA는 발현의 현저한 증가가 있었다. 전자파가 기억력에 미치는 영향도 밝히기 위해 해마에서의 여러 단백질들의 발현을 추후 조사할 것이다.

블록공중합체 자기조립제어를 통한 무결함 나노구조제작 (Directed Assembly of Block Copolymers for Defect-Free Nanofabrication)

  • 신동옥;정성준;김봉훈;이형민;박승학;;;김상욱
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.1-6
    • /
    • 2008
  • 블록공중합체(block copolymer)는 각 고분자 블록의 상대적인 조성비와 분자량에 따라 구, 실린더, 라멜라 등의 다양한 자기조립 나노구조를 형성하는 것으로 알려져 있다. 최근에는 블록공중합체의 자기조립 나노구조를 이용하여 나노복합재료, 포토닉 크리스탈, 나노선, 자기저장매체, 플래시 메모리 소자 등에 적용하려는 연구들이 활발히 진행되고 있다. 그러나 자연적으로 형성되는 블록공중합체 나노구조는 수많은 결함구조들을 포함하고 있어 실제 소자 적용에 큰 걸림돌이 되고 있다. 블록공중합체 나노구조의 실제적인 응용을 위해서는 박막상태의 시료 내에서 나노구조의 배향과 배열을 원하는 형태로 조절할 수 있는 공정의 확립이 선행되어야 한다. 즉, 블록공중합체의 자기조립을 나노기술분야에 적용하기 위해서는 대면적으로 완벽히 제어된 블록공중합체 나노구조를 구현하는 것이 필요하다.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes

  • Bang, Minji;Ryu, Onjeon;Kim, Do Gyeong;Mabunga, Darine Froy;Cho, Kyu Suk;Kim, Yujeong;Han, Seol-Heui;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.283-289
    • /
    • 2019
  • Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence- associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity. Tenovin-1-treated astrocytes showed increased SA-${\beta}$-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-$1{\beta}$, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.