Browse > Article
http://dx.doi.org/10.14400/JDC.2020.18.1.241

The Gene Expression Level Differences associated with Exercise in the Mouse Brain exposed to Radiofrequency Radiation  

Lee, Min Sun (Dept. of Nursing, Shinhan University)
Publication Information
Journal of Digital Convergence / v.18, no.1, 2020 , pp. 241-247 More about this Journal
Abstract
The effect of radiofrequency radiation (RF) exposure on mouse associated with the exercise was investigated in the brain at the molecular level. The expression of tyrosine hydroxylase(TH), FoxO3a, AMPKα and mRNA was investigated by real-time RT-PCR in striatum and the hypothalamus. In the striatum, TH mRNA expression was decreased in the exercise and RF exposure group. FoxO3a mRNA expression was significantly increased in the spontaneous exercise group and a significant decrease was observed in the RF exposure and spontaneous exercise group. In the hypothalamus, TH mRNA expression was significantly decreased in the RF exposure and spontaneous exercise group. But, FoxO3a mRNA expression was significantly increased in the RF exposure and spontaneous exercise group. We will further investigate the expression of protein molecules in the hippocampus of the brain to reveal the effects of RF radiation on memory.
Keywords
Radiofrequency; Exercise; mRNA; Tyrosine Hydroxylase(TH); FoxO3a; AMPK;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Whitehead, T. D., Moros, E. G., Brownstein, B. H., & Roti Roti, J. L. (2006). The number of genes changing expression after chronic exposure to code division multiple access or frequency DMA radiofrequency radiation does not exceed the false‐positive rate. Proteomics, 6(17), 4739-4744. DOI:10.1002/pmic.200600051   DOI
2 C. O. Shin & H.-J. Kim. (2019). S. Korea clinches title as world's first country to roll out 5G phones, Maeil Business News Korea. https://pulsenews.co.kr/view.php?year=2019&no=206087.
3 H. J. Lee, C. U. Chun & K. B. Kim. (2019). The 5G Ecosystem: How will 5G change our business landscape. Samjong insight Vol. 63. https://home.kpmg/kr/ko/home/insights/2019/02/insight63.html
4 D. C. Shin. (2007). Health effects of Ambient Particulate Matter, J Korean Med Assoc, 50(2), 175-182. DOI:10.5124/jkma.2007.50.2.175   DOI
5 Boscolo, P., Di Sciascio, M., D'ostilio, S., Del Signore, A., Reale, M., Conti, P., ... Di Gioacchino, M. (2001). Effects of electromagnetic fields produced by radiotelevision broadcasting stations on the immune system of women. Science of the Total Environment, 273(1-3), 1-10. DOI:10.1016/s0048-9697(01)00815-4   DOI
6 Lee, M. S., Oh, C. S., Ryu, J. H., Lee, J., & Kim, M. J. (2018). Alterations in spontaneous movement, corticosterone, and cytokines in mice exposed to 835 MHz radiofrequency radiation. Korean Journal of Physical Anthropology, 31(1), 19-26. DOI:10.11637/kjpa.2018.31.1.19   DOI
7 Zook, B. C., & Simmens, S. J. (2006). The effects of pulsed 860 MHz radiofrequency radiation on the promotion of neurogenic tumors in rats. Radiation Research, 165(5), 608-615. DOI:10.1667/RR3551.1   DOI
8 Inskip, P. D., Tarone, R. E., Hatch, E. E., Wilcosky, T. C., Shapiro, W. R., Selker, R. G., ... Linet, M. S. (2001). Cellular-telephone use and brain tumors. New England Journal of Medicine, 344(2), 79-86. DOI:10.1056/NEJM200101113440201   DOI
9 Nie, J., Beyea, J., Bonner, M. R., Han, D., Vena, J. E., Rogerson, P., ... Edge, S. B. (2007). Exposure to traffic emissions throughout life and risk of breast cancer: The western new york exposures and breast cancer (WEB) study. Cancer Causes & Control, 18(9), 947-955. DOI:10.1007/s10552-007-9036-2 [doi]   DOI
10 Maskey, D., & Kim, M. J. (2014). Immunohistochemical localization of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in the superior olivary complex of mice after radiofrequency exposure. Neuroscience Letters, 564, 78-82. DOI:10.1016/j.neulet.2014.02.013   DOI
11 Ji, E. S., Kim, C. J., Park, J. H., & Bahn, G. H. (2014). Duration-dependence of the effect of treadmill exercise on hyperactivity in attention deficit hyperactivity disorder rats. Journal of Exercise Rehabilitation, 10(2), 75-80. DOI:10.12965/jer.140107   DOI
12 Olsson, A., Bouaoun, L., Auvinen, A., Feychting, M., Johansen, C., Mathiesen, T., ... Villegier, A. (2019). Survival of glioma patients in relation to mobile phone use in denmark, finland and sweden. Journal of Neuro-Oncology, 141(1), 139-149. DOI:10.1007/s11060-018-03019-5   DOI
13 H. J. Lee, J. Wu, J. Chung & J. R. Wrathall. (2013). SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J Neurosci Res. 91(2), 196-210. DOI:10.1002/jnr.23151   DOI
14 Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185-215. DOI:10.1146/annurev.neuro.23.1.185   DOI
15 Baek, D. J., Lee, C. B., & Baek, S. S. (2014). Effect of treadmill exercise on social interaction and tyrosine hydroxylase expression in the attention-deficit/hyperactivity disorder rats. Journal of Exercise Rehabilitation, 10(5), 252-257. DOI:10.12965/jer.140162   DOI
16 O'dell, S., Gross, N., Fricks, A., Casiano, B., Nguyen, T., & Marshall, J. (2007). Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience, 144(3), 1141-1151. DOI:10.1016/j.neuroscience.2006.10.042   DOI
17 Kim, H., Heo, H., Kim, D., Ko, I., Lee, S., Kim, S., ... Kim, J. (2011). Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neuroscience Letters, 504(1), 35-39. DOI:10.1016/j.neulet.2011.08.052   DOI
18 Rafalski, V. A., & Brunet, A. (2011). Energy metabolism in adult neural stem cell fate. Progress in Neurobiology, 93(2), 182-203. DOI:10.1016/j.pneurobio.2010.10.007   DOI
19 Daitoku, H., & Fukamizu, A. (2007). FOXO transcription factors in the regulatory networks of longevity. Journal of Biochemistry, 141(6), 769-774. DOI:10.1093/jb/mvm104   DOI
20 Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., ... Greenberg, M. E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (New York, N.Y.), 303(5666), 2011-2015. DOI:10.1126/science.1094637   DOI
21 Canto, C., & Auwerx, J. (2012). Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)? Pharmacological Reviews, 64(1), 166-187. DOI:10.1124/pr.110.003905   DOI
22 Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15-25. DOI:10.1016/j.cmet.2004.12.003   DOI
23 Bayod, S., Guzman-Brambila, C., Sanchez-Roige, S., Lalanza, J. F., Kaliman, P., Ortuno-Sahagun, D., ... Pallas, M. (2015). Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain. Journal of Molecular Neuroscience, 55(2), 525-532. DOI:10.1007/s12031-014-0376-6   DOI
24 Marosi, K., Bori, Z., Hart, N., Sarga, L., Koltai, E., Radak, Z., & Nyakas, C. (2012). Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience, 226, 21-28. DOI:10.1016/j.neuroscience.2012.09.001 [doi]   DOI
25 Salminen, A., Kaarniranta, K., & Kauppinen, A. (2013). Crosstalk between oxidative stress and SIRT1: Impact on the aging process. International Journal of Molecular Sciences, 14(2), 3834-3859. DOI:10.3390/ijms14023834   DOI