• 제목/요약/키워드: Molecular interaction

검색결과 1,506건 처리시간 0.03초

Biochemical and Biophysical Characterizations of the Interaction between Two PDZ Adapter Proteins NHERF and E3KARP in vitro

  • Hwang, Eun-Young;Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3241-3246
    • /
    • 2010
  • NHERF ($Na^+/H^+$ exchanger regulatory factor) and E3KARP (NHE3 kinase A regulatory protein) play important roles in membrane targeting, trafficking and sorting of ion channels, transmembrane receptors and signaling proteins in many tissues. Each of these proteins contains two PDZ (PSD-95/Dlg-1/ZO-1) domains, which mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The interaction between NHERF and E3KARP was investigated by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, His-tagged pull-down experiment, and size-exclusion column (SEC) chromatography. BIAcore experiments revealed that NHERF bound to E3KARP with an apparent $K_D$ of 7 nM. Fluorescence emission spectra of the NHERF-E3KARP complex suggested that the tight interaction between these proteins was accompanied by significant conformational changes in one or both. The CD spectra of NHERF and E3KARP show that the conformational changes of these proteins were dependent on pH and temperature. These results implicate that the NHERF-E3KARP complex allows intracellular signaling complexes to form through PDZ-PDZ interactions.

PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus

  • Kwon, Il-Sun;Lee, Kyung-Hoon;Choi, Joung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.127-132
    • /
    • 2010
  • Phosphatidylinositol (3,4,5)-triphosphate ($PIP_3$) is a lipid second messenger that employs a wide range of downstream effector proteins for the regulation of cellular processes, including cell survival, polarization and proliferation. One of the most well characterized cytoplasmic targets of $PIP_3$, serine/threonine protein kinase B (PKB)/Akt, promotes cell survival by directly interacting with nucleophosmin (NPM)/B23, the nuclear target of $PIP_3$. Here, we report that nuclear $PIP_3$ competes with Akt to preferentially bind B23 in the nucleoplasm. Mutation of Arg23 and Arg25 in the PH domain of Akt prevents binding to $PIP_3$, but does not disrupt the Akt/B23 interaction. However, treatment with phosphatases PTEN or SHIP abrogates the association between Akt and B23, indicating that nuclear $PIP_3$ regulates the Akt/B23 interaction by controlling the concentration and subcellular dynamics of these two proteins.

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제22권4호
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

A WD40 Repeat Protein, Arabidopsis Sec13 Homolog 1, May Play a Role in Vacuolar Trafficking by Controlling the Membrane Association of AtDRP2A

  • Lee, Myoung Hui;Lee, Sung Hoon;Kim, Heyran;Jin, Jing Bo;Kim, Dae Heon;Hwang, Inhwan
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.210-219
    • /
    • 2006
  • Dynamin-related protein 2A (AtDRP2A, formally ADL6), a member of the dynamin family, is critical for protein trafficking from the TGN to the central vacuole. However, the mechanism controlling its activity is not well understood in plant cells. We isolated Arabidopsis sec13 homolog1 (AtSeh1) that interacts with AtDRP2A by a yeast two-hybrid screening. AtSeh1 has four WD40 motifs and amino acid sequence homology to Sec13, a component of COPII vesicles. Coimmunoprecipitation and protein pull-down experiments demonstrated specific interaction between AtSeh1 and AtDRP2A. AtSeh1 bound to the pleckstrin homology domain of AtDRP2A in competition with the C-terminal domain of the latter, and this resulted in inhibition of the interaction between AtDRP2A and PtdIns3P in vitro. AtSeh1 localized to multiple locations: the nucleus, the prevacuolar compartment and the Golgi complex. Based on these results we propose that AtSeh1 plays a role in regulating cycling of AtDRP2A between membrane-bound and soluble forms.

Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex

  • Hwang, Eun Young;Jeong, Mi Suk;Park, So Young;Jang, Se Bok
    • BMB Reports
    • /
    • 제47권9호
    • /
    • pp.488-493
    • /
    • 2014
  • Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED.

Investigation of the effect of Staufen1 overexpression on the HIV-1 virus production

  • Park, Seong-won;Yu, Kyung-Lee;Bae, Jun-Hyun;Kim, Ga-Na;Kim, Hae-In;You, Ji Chang
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.551-556
    • /
    • 2021
  • In this study, we investigated how Staufen1 influences the HIV-1 production. The overexpression of Staufen1 increased virus production without any negative affect on the viral infectivity. This increase was not caused by transcriptional activation; but by influencing post-transcriptional steps. Using multiple Gag protein derivatives, we confirmed that the zinc-finger domains of the HIV-1 nucleocapsid (NC) are important for its interaction with Staufen1. We also found that Staufen1 colocalized in stress granules with the mature form of the HIV-1 NC protein.

Reactions of Acetyl Radical with Acetylene - A Computational Study

  • Tran, Tu Anh;Schiesser, Carl H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권3호
    • /
    • pp.595-598
    • /
    • 2010
  • Ab initio and DFT molecular orbital calculations predict that acetyl radical reacts with acetylene through interactions primarily involving the SOMO of the radical and the in-plane ${\pi}$-bond of acetylene. An energy barrier (${\Delta}E_1$) of 39.6 kJ $mol^{-1}$ is predicted for the preferred anti arrangement of reactants at the CCSD(T)/cc-pVDZ//BHandHLYP/cc-pVDZ level of theory. NBO analysis reveals additional interactions between the radical SOMO and the nearby C-H ${\sigma}$-bond in acetylene worth about 10% of the total transition state interaction energy. This type of orbital interaction has not previously been observed in radical addition reactions involving C-C ${\pi}$-bonds.

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

A Method for Determining Molecular Weights of Block Copolymers by Gel Permeation Chromatography

  • Sohn, Jeong-In;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.140-145
    • /
    • 1984
  • A theory is given for determining the molecular weights of block copolymers from the experimental elution volume in GPC. Interaction effect between a sample of block copolymer and a column packing material as well as the size effect are separately considered for the first time applying the partial exclusion mechanism proposed by Dawkins. The molecular weight determination shows 6${\%}$ standard-deviation from the molecular weights measured by an osmometric method for eight block copolymers, which is much more improved result than other methods, e.g., the universal plot method (13 ${\%}$) and the Runyon's method (12 ${\%}$). The reason which explains the better result is that our theory takes into account the interaction effect correctly.