Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.127

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys  

Shen, Luming (School of Civil Engineering, The University of Sydney)
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 127-136 More about this Journal
Abstract
In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.
Keywords
Mg alloys; molecular dynamics; solute effect; edge dislocation; drag coefficient; critical shear stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reed-Hill, R.E. and Robertson, W.D. (1957), "Additional modes of deformation twinning in magnesium", Acta. Metal., 5(12), 717-727.   DOI   ScienceOn
2 Staroselsky, A. and Anand, L. (2003), "A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B", Int. J. Plast., 19(10), 1843-1864.   DOI   ScienceOn
3 Sun, D.Y, Mendelev, M.I., Becker, C.A., Kudin, K., Haxhimali, T., Asta, M., Hoyt, J.J., Karma, A. and Srolovitz, D.J. (2006), "Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg", Phy. Rev. B, 73(2), 024116.   DOI   ScienceOn
4 Tsuru, T., Udagawa, Y. and Yamaguchi, M. (2013), "Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip", J. Phys. Cond. Mater., 25(2), 022202.   DOI   ScienceOn
5 Yasi, J.A., Nogaret, T., Trinkle, D.R., Qi, Y., Hector, L.G. and Curtin, W.A. (2009), "Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions", Model. Simul. Mater. Sc. Eng., 17055012.
6 Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31(3), 1695-1697.   DOI   ScienceOn
7 Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38.   DOI   ScienceOn
8 Kainer, K.U. (2000), Magnesium alloys and their applications, Wiley-VCH, Weinheim.
9 Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998), "Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58(17), 11085.   DOI
10 Kong, Y. and Shen, L. (2011), "Strengthening mechanism of metallic nanoscale multilayer with negative enthalpy of mixing", J. Appl. Phys., 110(7), 073522.   DOI   ScienceOn
11 Leyson, G.P.M., Hector, L.G. and Jr., Curtin, W.A. (2012), "First-principles prediction of yield stress for basal slip in Mg-Al alloys", Acta Mater., 60(13-14), 5197-5203.   DOI
12 Olmsted, D.L., Hector, L.G. and Curtin, W.A. (2006), "Molecular dynamics study of solute strengthening in Al/Mg alloys", J. Mech. Phys. Solids, 54(8), 1763-1788.   DOI   ScienceOn
13 Liu, X.Y., Adams, J.B., Ercolessi, F. and Moriarty, J.A. (1996), "EAM potential for magnesium from quantum mechanical forces", Model. Simul. Mater. Sc. Eng., 4, 293.   DOI   ScienceOn
14 Mendelev, M.I., Asta, M., Rahman, M.J. and Hoyt, J.J. (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Phil. Mag., 89(34-36), 3269-3285.   DOI   ScienceOn
15 Nogaret, T., Curtin, W.A. and Yasi, J.A. (2010), "Atomistic study of edge and screw < c plus a > dislocations in magnesium", Acta. Mater., 58(13), 4332-4343.   DOI   ScienceOn
16 Osetsky, Y.N. and Bacon, D.J. (2003), "An atomic-level model for studying the dynamics of edge dislocations in metals", Model. Simul. Mater. Sc. Eng., 11, 427.   DOI   ScienceOn
17 Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19.   DOI   ScienceOn
18 Bacon, D. and Martin, J. (1981), "The atomic structure of dislocations in h.c.p. metals I. Potentials and unstressed crystals", Phil. Mag. A, 43(4), 883-900.   DOI   ScienceOn
19 Ando, S., Gotoh, T. and Tonda, H. (2002), "Molecular dynamics simulation of dislocation core structure in hexagonal-close-packed metals", Metall. Mater. Trans. A, 33(3), 823-829.   DOI
20 Bacon, D. and Liang, M. (1986), "Computer simulation of dislocation cores in h.c.p. metals I. Interatomic potentials and stacking-fault stability", Phil. Mag. A, 53(2), 163-179.   DOI   ScienceOn
21 Bulatov, V.V. and Cai, W. (2006), Computer simulations in dislocations, Oxford University Press, New York.
22 Conrad, H. and Robertson, W.D. (1957), AIME 209 503.
23 Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29(12), 6443-6453.   DOI
24 Groh, S., Marin, E.B., Horstemeyer, M.F. and Bammann, D.J. (2009), "Dislocation motion in magnesium: a study by molecular statics and molecular dynamics", Model. Simul. Mater. Sc. Eng., 17(7), 075009.   DOI   ScienceOn
25 Hirth, J.P. and Lothe, J. (1992), Theory of dislocations, Krieger, Malabar, FL.