Browse > Article
http://dx.doi.org/10.6564/JKMRS.2018.22.4.139

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters  

Kim, Ji-Hun (College of Pharmacy, Chungbuk National University)
Yi, Jong-Jae (College of pharmacy and Institute of Pharmaceutical Sciences, CHA University)
Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Son, Woo Sung (College of pharmacy and Institute of Pharmaceutical Sciences, CHA University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.22, no.4, 2018 , pp. 139-143 More about this Journal
Abstract
Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.
Keywords
Molecular dynamics simulation; nuclear magnetic resonance; peptide; micelle; hydrogen bonding; dodecylphosphocholine;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K. Nam, B. Chang, and K. No, Bull. Korean Chem. Soc. 32, 3553 (2011)   DOI
2 J. Jee, Bull. Korean Chem. Soc. 31, 2717 (2010)   DOI
3 Z. Zhang, Y. Shi, and H. Liu, Biophys. J. 84, 3583 (2003)   DOI
4 G. E. Arnold and R. L. Ornstein, Proteins 18, 19 (1994)   DOI
5 W. Im and B. Roux, J. Mol. Biol. 319, 1177 (2002)   DOI
6 B. Xia, V. Tsui, D. A. Case, H. J. Dyson, and P. E. Wright, J. Biomol. NMR 22, 317 (2002)   DOI
7 T. Wymore and T. C. Wong, Biophys. J. 76, 1213 (1999)   DOI
8 J. Faeder and B. M. Ladanyi, J. Phys. Chem. B 104, 1033 (2000)   DOI
9 J. J. Wendoloski, S. J. Kimatian, C. E. Schutt, and F. R. Salemme, Science 243, 636 (1989)   DOI
10 H. Won, M. Seo, S. Jung, S. Lee, S. Kang, W. Son, H. Kim, T. Park, S. Park, and B. Lee, J. Med. Chem. 49, 4886 (2006)   DOI
11 J. Jee, J. Kor. Mag. Reson. Soc. 19, 1 (2015)   DOI
12 J. Jee, J. Kor. Mag. Reson. Soc. 20, 102 (2016)   DOI
13 D. A. Case, T. E. Cheatham, III, T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang, and R. Woods. J. Computat. Chem. 26, 1668 (2005)   DOI
14 H. J. C. Berendsen, D. vand der Spoel, and R. vand Drunen, Comp. Phys. Comm. 91, 43 (1995)   DOI
15 E. Lindahl, B. Hess, and D. vand der Spoel, J. Mol. Model. 7, 306 (2001)   DOI
16 D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005)   DOI
17 B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)   DOI
18 D. W. Sim, Z. Lu, H. S. Won, S. N. Lee, M. D. Seo, B. J. Lee, and J. H. Kim, Molecules 22, 1347 (2017)   DOI
19 Y. Kuroda, Y. Maeda, S. Sawa, K. Shibata, K. Miyamoto, and T. Nakagawa, J. Pept. Sci. 9, 212 (2003)   DOI
20 M. D. Seo, H. S. Won, J. H. Kim, T. Mishig-Ochir, and B. J. Lee, Molecules 17, 12276 (2012)   DOI