• Title/Summary/Keyword: Molecular beam Epitaxy

Search Result 352, Processing Time 0.031 seconds

Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles

  • Oh, Jae Won;Cho, Il-Wook;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.67-71
    • /
    • 2015
  • InP/InGaP quantum structures (QSs) were grown on GaAs (001) substrates by a migration-enhanced molecular beam epitaxy method. Temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL (TRPL) were performed to investigate the optical properties of InP/InGaP QSs as a function of migration enhanced epitaxy (MEE) growth cycles from 2 to 8. One cycle for the growth of InP QS consists of 2-s In and 2-s P supply with an interruption time of 10 s after each source supply. As the MEE growth cycle increases from 2 to 8, the PL peak is redshifted and exhibited different (larger, comparable, or smaller) bandgap shrinkages with increasing temperature compared to that of bulk InP. The PL decay becomes faster with increasing MEE cycles while the PL decay time increases with increasing emission wavelength. These PL and TRPL results are attributed to the different QS density and size/shape caused by the MEE repetition cycles. Therefore, the size and density of InP QSs can be controlled by changing the MEE growth cycles.

Growth and characterization of ZnSe/GaAs(100) by hot-wall technique (HWE 방법에 의한 ZnSe/GaAs(100)의 성장과 특성)

  • 전경남;고석룡;이경준;정원기;두하영;이춘호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.56-61
    • /
    • 1996
  • A hot wall epitaxy (HWE) apparatus with double source tubes was manufactured. This apparatus can be used to grow two kinds of epilayers at the same time or to grow heterostructures and multilayers. Undoped ZnSe single crystal films were grown on GaAs(100) substrates byusing this apparatus. SEM, XRD and PL analyses indicated that epilayers had good crystalline and optical quality. The epilayers grown at the source temperature 660 .deg. C and the substrates temperature $350^{\circ}C$. in $2 {\times} 10^{-6}$ toor were mirror like and good quality. PL measurements show that the crystalline qualityis comparable with that of the ZnSe/GaAs epilayer grown by molecular beam epitaxy.

  • PDF

Growth of InGaN on sapphire by GSMBE(gas source molecular beam epitaxy) using $DMH_y$(dimethylhydrazine) as nitrogen source at low temperature (Nitrogen source로 암모니아, $DMH_y$(dimethylhydrazine)을 사용해 Gas-Source MBE로 성장된 InGaN 박막특성)

  • Cho, Hae-Jong;Han, Kyo-Yong;Suh, Young-Suk;Park, Kang-Sa;Misawa, Yusuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1010-1014
    • /
    • 2004
  • High quality GaN layer and $In_xGa_{1-x}N$ alloy were obtained on (0001)sapphire substrate using ammonia$(NH_3)$ and dimethylhydrazine$(DMH_y)$ as a nitrogen source by gas source molecular hem epitaxy(GSMBE) respectively. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN and $In_xGa_{1-x}N$. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from Plane of GaN has exhibitted as narrow as 8 arcmin. Photoluminescence measurement of GaN and $In_xGa_{1-x}N$ were investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. In content of $In_xGa_{1-x}N$ epitaxial layer according to growth condition was investigated.

  • PDF

Hydrogen concentration and critical epitaxial thicknesses in low-temperature Si(001) layers grown by UHV ion-beam sputter deposition.

  • Lee, Nae-Eung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • Hydrogen concentration depth profiles in homoepitaxial Si(001) films grown from hyper-thermal Si beams generated by ultrahigh vacuum (UHV) ion-beam sputtering have been measured by nuclear reaction analyses as a function of film growth temperature and deposition rate. Bulk H concentrations CH in the crystalline Si layers were found tio be below detection limits, 1${\times}$1019cm-3, with no indication of significant H surface segregation at the crystalline/amorphous interface region. This is quite different than the case for growth by molecular-beam epitaxy (MBE) where strong surface segregation was observed for similar deposition conditions with average CH values of 1${\times}$1020cm-3 in the amorphous overlayer. The markedly decreased H concentrations in the present experiments are due primarily to hydrogen desorption by incident hyperthermal Si atoms. Reduced H surface coverages during growth combined with collisionally-induced filling of interisland trenches and enhanced interlayer mass transport provide an increase in critical epitaxial thicknesses by up to an order of magnitude over previous MBE results.

  • PDF

A Study on the Ohmic Contacts and Etching Processes for the Fabrication of GaSb-based p-channel HEMT on Si Substrate (Si 기판 GaSb 기반 p-채널 HEMT 제작을 위한 오믹 접촉 및 식각 공정에 관한 연구)

  • Yoon, Dae-Keun;Yun, Jong-Won;Ko, Kwang-Man;Oh, Jae-Eung;Rieh, Jae-Sung
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • Ohmic contact formation and etching processes for the fabrication of MBE (molecular beam epitaxy) grown GaSb-based p-channel HEMT devices on Si substrate have been studied. Firstly, mesa etching process was established for device isolation, based on both HF-based wet etching and ICP-based dry etching. Ohmic contact process for the source and drain formation was also studied based on Ge/Au/Ni/Au metal stack, which resulted in a contact resistance as low as $0.683\;{\Omega}mm$ with RTA at $320^{\circ}C$ for 60s. Finally, for gate formation of HEMT device, gate recess process was studied based on AZ300 developer and citric acid-based wet etching, in which the latter turned out to have high etching selectivity between GaSb and AlGaSb layers that were used as the cap and the barrier of the device, respectively.

  • PDF

Plasma Effects on the Growth of $In_{0.2}Ga_{0.8}N/GaN$ Heterostructures using Molecular Beam Epitaxy (분자선에피를 이용한 $In_{0.2}Ga_{0.8}N/GaN$ 이종접합구조의 성장에 미치는 플라즈마의 영향)

  • Shim Kyu-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.84-90
    • /
    • 2005
  • The influence of plasma parameters on the growth of $In_{0.2}Ga_{0.8}N/GaN$ heterostructures has been investigated using plasma-assisted molecular beam epitaxy. Since plasma ejects plenty of energetic particles with different energy levels and flux density at various rf power levels, plasma modulated both growth rate and optical properties significantly. For instance, surface roughness and the emission spectrum of photoluminescence were degraded at low and high rf power. According to sharp interfaces between epitaxial films and strong peaks observed from photoluminescence spectra, our experimental setup presented optimal operation range of rf powers at around 400W. The phenomena could be explained by the presence of energetic particles modulating the rate of plasma stimulated desorption and surface diffusion, and energetic particles exceeding critical value resulted in the incorporation of defects at subsurface. The optimal rf power regime increased by 100W for $In_{0.2}Ga_{0.8}N/GaN$ growth in comparison with GaN. The effects of rf power were discussed in conjunction with kinetic processes being stimulated by energetic particles.

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Improved Uniformity of GaAs/AlGaAs DBR Using the Digital Alloy AlGaAs Layer (디지털 합금 AlGaAs층을 이용하여 제작된 GaAs/AlGaAs DBR의 균일도 향상)

  • Cho, N.K.;Song, J.D.;Choi, W.J.;Lee, J.I.;Jeon, Heon-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.280-286
    • /
    • 2006
  • A distributed Bragg reflector (DBR) for the application of $1.3{\mu}m$ vertical cavity surface emitting laser (VCSEL) has grown by digital-alloy AlGaAs layer using the molecular beam epitaxy (MBE) method. The measured reflection spectra of the digital-alloy AlGaAs/GaAs DBR have uniformity in 0.35% over the 1/4 of 3-inch wafer. Furthermore, the TEM image showed that the composition and the thickness of the digital-alloy AlGaAs layer in AlGaAs/GaAs DBR was not affected by the temperature distribution over the wafer whole surface. Therefore, the digital-alloy AlGaAs/GaAs DBR can be used to get higher yield of VCSEL with the active medium of InAs quantum dots whose gain is inhomogeneously broadened.

Structural Characteristics on InAs Quantum Dots multi-stacked on GaAs(100) Substrates

  • Roh, Cheong-Hyun;Park, Young-Ju;Kim, Eun-Kyu;Shim, Kwang-Bo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The InAs self-assembled quantun dots (SAQDS) were grown on a GaAs(100) substrate using a molecular beam epitaxy (MBE) technique. The InAs QDs were multi-stacked to have various layer structures of 1, 3, 6, 10, 15 and 20 layers, where the thickness of the GaAs spacer and InAs QD layer were 20 monolayers (MLs) and 2 MLs, respectively. The nanostructured feature was characterized by photoluminescence (PL) and scanning transmission electron microscopy (STEM). It was found that the highest PL intensity was obtained from the specimen with 6 stacking layers and the energy of the PL peak was split with increasing the number of stacking layers. The STEM investigation exhibited that the quantum dots in the 6 stacking layer structure were well aligned in vertical columns without any deflect generation, whereas the volcano-like deflects were formed vertically along the growth direction over 10 periods of InAs stacking layers.

  • PDF