DOI QR코드

DOI QR Code

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films

Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향

  • Lee, Hong-Chan (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Choi, Won-Kook (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Shim, Kwang-Bo (Department of Ceramic Engineering, Hanyang Univ.) ;
  • Oh, Young-Jei (Thin Film Materials Research Center, Korea Institute of Science and Technology)
  • 이홍찬 (한국과학기술연구원 박막재료연구센터) ;
  • 최원국 (한국과학기술연구원 박막재료연구센터) ;
  • 심광보 (한양대학교 세라믹공학과) ;
  • 오영제 (한국과학기술연구원 박막재료연구센터)
  • Published : 2006.05.31

Abstract

ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Keywords

References

  1. Y. H. Leung and A. B. Djurisic, 'Changing the shape of ZnO nanostructures by controlling Zn vapor release: from tetrapod to bone-like nanorods', Chem. Phys. Lett., vol. 385, pp. 155-159, 2004 https://doi.org/10.1016/j.cplett.2003.12.102
  2. X. L. Hu, Y. J. Znu, and S. W. Wang, 'Sonochemical and microwave-assisted synthesis of linked single- crystalline ZnO rods', Materials Chem. Phys., vol. 88, pp. 421-426, 2004 https://doi.org/10.1016/j.matchemphys.2004.08.010
  3. Y. Dai, Y. Zhang, and Z. L. Wang, 'The octa-twin tetraleg ZnO nanostructures', Solid State Commun., vol. 126, pp. 629-633, 2003 https://doi.org/10.1016/S0038-1098(03)00277-1
  4. J. D. Albrecht, P. P. Ruden, and S. Limpijumnong, 'High field electron transport properties of bulk ZnO', J. Appl. Phys., vol. 86, pp. 6864-6867, 1998
  5. Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, and Q. Zhao, 'Efficient field emission from ZnO nanoneedle arrays', Appl. Phys. Lett., vol. 83, pp. 144-146, 2003 https://doi.org/10.1063/1.1589166
  6. V. Craciun, J. Geretovsky, I. W. Boyd, J. Elders, and J. G. E. Gardeniers, 'Growth of ZnO thin films on GaAs by pulsed laser deposition', Thin Solid Films, vol. 259, pp. 1-4, 1995 https://doi.org/10.1016/0040-6090(94)09479-9
  7. Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. J. Zhang, 'Mechanisms of green emission from ZnO films prepared by RF-magnetron sputtering', Optical Materials, vol. 26, pp. 23-26, 2004 https://doi.org/10.1016/j.optmat.2003.12.005
  8. K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, 'ZnO growth on Si by radical source MBE', J. Cryst. Growth, vol. 214, pp. 50-54, 2000 https://doi.org/10.1016/S0022-0248(00)00057-9
  9. M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, 'Comparative study on the growth characteristics of ZnO nanowires and thin films by metallorganic chemical vapor deposition (MOCVD)', J. Cryst. Growth, vol. 268, pp. 149-154, 2004 https://doi.org/10.1016/j.jcrysgro.2004.05.019
  10. R. Tena-Zaera, M. C. Martinez-Tomas, and S. Hassani, 'Study of the ZnO crystal growth by vapour transport methods', J. Cryst. Growth, vol. 270, pp. 711-721, 2004 https://doi.org/10.1016/j.jcrysgro.2004.06.053
  11. B. J. Jin, S. H. Bae, S. Y Lee, and S. Im, 'Effects of native defects on optical and electrical properties of ZnO prepared by pulse laser deposition', Mater: Sci. Eng., vol. B71, pp. 301-305, 2000
  12. Y. S. Jung, Oleg Kononenko, J. S. Kim, and W. K. Choi, 'Two-dimensional growth of ZnO epitaxial films on $c-A1_2O_3$ (0001) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular beam epitaxy', J. Crystal. Growth, vol. 274, pp. 418-423, 2005 https://doi.org/10.1016/j.jcrysgro.2004.10.016
  13. D. C. Look, 'Electrical and optical properties of ptype ZnO', Semicond. Sci. Technol., vol. 20. pp. s55-s61. 2005 https://doi.org/10.1088/0268-1242/20/4/007
  14. Y. R. Ryu and T. S. Lee, 'Properties of arsenicdoped p-type ZnO grown by hybrid beam deposition', Appl. Phys. Lett., vol. 83. no. 1, pp. 87-89, 2003 https://doi.org/10.1063/1.1590423
  15. D. C. Look and B. Claflin, 'P-type doping and devices based on ZnO', Phys. Stat. Sol., vol. 241, No.3. pp. 624-630. 2004 https://doi.org/10.1002/pssb.200304271
  16. H.-C. Lee, K.-B. Shim, and Y-J . Oh, 'Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method', J. Sensors Soc., vol. 15, no. 2, pp. 01-06, 2006 https://doi.org/10.5369/JSST.2006.15.2.084