• Title/Summary/Keyword: Molecular Separation

Search Result 485, Processing Time 0.025 seconds

Molecularly Imprinted Monolithic Stationary Phases for Liquid Chromatographic Separation of Tryptophan and N-CBZ-Phenylalanine Enantiomers

  • Yan, Hong-Yuan;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.357-363
    • /
    • 2006
  • Monolithic molecularly imprinted columns were designed and prepared by an in-situ thermal-initiated copolymerization technique for rapid separation of tryptophan and N- CBZ-phenylalanine enantiomers. The influence of polymerization conditions and separation conditions on the specific molecular recognition ability for enantiomers and diastereomers was investigated. The specious molecular recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities in the molecularly imprinted polymer (MIP). Moreover, hydrogen bonding interactions and hydrophobic interactions played an important role in the retention and separation. Compared to conventional MIP preparation procedures, the present method is very simple, and its macroporous structure has excellent separation properties.

Pervaporation separation of polyion complex composite membranes for the separation of water/alcohol mixtures: characterization of permeation behavior by using molecular modeling techniques

  • Kim, Sang-Gyun;Lee, Yoon-Gyu;Jonggeon Jegal;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.91-94
    • /
    • 2003
  • In this work, the physicochemical properties for permeant molecules and polyion complex membrane prepared by complexation between SA and chitosan were determined by using molecular modeling methods, and the permeation behaviors of water and alcohol molecules through the PIC membrane have been investigated. In the case of penetrant molecule, the experimental results showed that the prepared membrane was excellent pervaporation performance result in most solution, and the selectivity and permeability of the membrane were dependent on the molecular size, the polarity and the hydrophilic surface of permeant organics. However, the separation behavior of methanol aqueous solution exhibited other permeation tendency with other feed solutions and contradictory result. That is, the membrane were preferentially permeable to methanol over water despite water molecule has stronger polarity and small molecular size than methanol molecule. In this study, the results were discussed from the viewpoint of chemical and physical properties between permeant molecules and membrane in the diffusion state.

  • PDF

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Carbon Molecular Sieve Membranes Dispersed with Nano Particles

  • H.Suda;Ha, K.raya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.183-186
    • /
    • 2004
  • Nano particles-containing CMS membranes were prepared by pyrolysis of polyimides dispersed uniformly with precursors and their gas separation performances were examined, to elucidate the permeation mechanism and to further improve the gas separation performance. Consequently, it was suggested that the separation performance could be controlled by doping nano-particles in the CMS membranes, and that optimization of various factors, such as the size, content, and dispersion state of the nano particles would contribute for further improvement of the gas separation performance.

  • PDF

Efficiency criteria for optimization of separation cascades for uranium enrichment

  • Sulaberidze, Georgy;Zeng, Shi;Smirnov, Andrey;Bonarev, Anton;Borisevich, Valentin;Jiang, Dongjun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.126-131
    • /
    • 2018
  • As it is known, uranium enrichment is carried out on industrial scale by means of multistage separation facilities, i.e., separation cascades in which gas centrifuges (GCs) are connected in series and parallel. Design and construction of these facilities require significant investment. So, the problem of calculation and optimization of cascade working parameters is still relevant today. At the same time, in many cases, the minimum unit cost of a product is related to the cascade having the smallest possible number of separation elements/GCs. Also, in theoretical studies, it is often acceptable to apply as an efficiency criterion the minimum total flow to supply cascade stages instead of the abovementioned minimum unit cost or the number of separation elements. In this article, cascades with working parameter of a single GC changing from stage to stage are optimized by two of the abovementioned performance criteria and are compared. The results obtained allow us to make a conclusion about their differences.

Cyclosophoraose as a Novel Chiral Stationary Phase for Enantioseparation

  • JUNG, YUN-JUNG;LEE, SANG-HOO;PAIK, SEUNG-R.;JUNG, SEUN-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1338-1342
    • /
    • 2004
  • Cyclosophoraoses (Cys), cyclic ${\beta}-(1{\rightarrow}2)-D-glucans$ produced by Rhizobium meliloti 2011, were used as a novel chiral stationary phase for the enantiomeric separation. A novel Cys stationary phase, chemically immobilized onto porous silica via aminopropyltrimethoxysilane as a molecular linker, showed good separation for each racemate of bupivacain (separation factor, $\alpha$=1.3), propranolol ($\alpha$=1.3), and fenoprofen ($\alpha$=2.9), respectively, under the mobile phase of water: methanol (80:20, v/v) at a constant flow rate of 0.9 ml/min at pH7.

Size Characterization of Sodium Hyaluronate by Field Programming Frit Inlet Asymmetrical Flow Field-Flow Fractionation/Multiangle Light Scattering

  • Kim, Hoon-joo;Lee, Hee-jeong;Moon, Myeong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.413-418
    • /
    • 2006
  • Sodium hyaluronate (NaHA), water soluble polymer having ultra-high molecular weight, is characterized by using on-line frit inlet asymmetrical flow field-flow fractionation (FI-AFlFFF) and multiangle light scattering (MALS). This study demonstrates the capability of power programming FI-AFlFFF for the separation of NaHA and the applicability of FI-AFlFFF with MALS for the characterization of molecular weight distribution and their structural information. Since sample injection and relaxation in FI-AFlFFF are achieved by using hydrodynamic relaxation, separation of high molecular weight polymers can be achieved smoothly without halting the separation flow. Experiments are carried out with the two different NaHA products (a raw NaHA sample and a thermally degraded NaHA product) and molecular weight distribution and conformations in solution are determined. Influence of sample filtration on the change of molecular weight distribution is also discussed.

Morphology of Silk Fibroin/Poly(vinyl alcohol) Blend Film (견피브로인/Poly(vinyl alcohol) 브렌드 필름의 형태학적 구조)

  • 엄인철;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.169-175
    • /
    • 1998
  • The morphology of silk fibroin/poly(vinyl alcohol)(PVA)blend films was investigated using optical microscopy and confocal laser scanning microscopy. The effects of blend ratio and molecular weight of silk fibroin and PVA on phase separation were studied. Macro-phase separation occurred for the silk fibroin-rich/poor region whereas micro-phase separation took place for the dispersed/continuous phase, In spite of differences in molecular weight and blend ratio, it is observed that the dispersed phase and continuous one are composed of silk fibroin and PVA component, respectively. As the molecular weight of silk fibroin and silk fibroin content in blend ratio are decreased, the compatibility of blend is increased due to the reduction of micro-phase separation.

  • PDF

Molecular Dynamics (MD) Study of Polymeric Membranes for Gas Separation (기체 분리용 고분자 분리막의 분자동력학 연구)

  • Park, Chi Hoon;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.341-349
    • /
    • 2014
  • Molecular dynamics (MD) computer simulation is a very useful tool to calculate the trajectory and velocity of particles (generally, atoms), and thus to analyze the various structures and kinetic properties of atoms and molecules. For gas separation membranes, MD has been widely used for structure analysis of polymers such as free volume analysis and conformation search, and for the study of gas transport behavior such as permeability and diffusivity. In this paper, general methodology how to apply MD on gas separation membranes will be described and various related researches will be introduced.