DOI QR코드

DOI QR Code

Molecular Dynamics (MD) Study of Polymeric Membranes for Gas Separation

기체 분리용 고분자 분리막의 분자동력학 연구

  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 김득주 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2014.10.22
  • Accepted : 2014.10.24
  • Published : 2014.10.31

Abstract

Molecular dynamics (MD) computer simulation is a very useful tool to calculate the trajectory and velocity of particles (generally, atoms), and thus to analyze the various structures and kinetic properties of atoms and molecules. For gas separation membranes, MD has been widely used for structure analysis of polymers such as free volume analysis and conformation search, and for the study of gas transport behavior such as permeability and diffusivity. In this paper, general methodology how to apply MD on gas separation membranes will be described and various related researches will be introduced.

분자 동력학(Molecular dynamics; MD) 전산모사 기술은 대상이 되는 입자(일반적으로, 원자)의 위치와 속도를 계산하여, 원자 및 분자들의 다양한 구조 및 동적 특성을 분석하는 데에 있어서 매우 유용한 기술이다. 기체 분리막 연구에 있어서도 MD는 그동안 free volume 분석, conformation search 등과 같은 고분자 구조 분석 및 permeability, diffusivity와 같은 기체 투과 거동을 연구하는 데 널리 사용되어 왔다. 본 총설에서는 기체 분리막 분야에 MD를 적용하는 일반적인 방법론에 대하여 서술하고, 다양한 관련 연구들을 소개하고자 한다.

Keywords

References

  1. D. J. Kim and S. Y. Nam, "Research and Development Trends of Polyimide Based Material for Gas Separation", Membrane Journal, 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  2. J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS", Membrane Journal, 24, 325 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.325
  3. D. J. Kim and S. Y. Nam, "Development and Application Trend of Bipolar Membrane for Electrodialysis", Membrane Journal, 23, 319 (2013).
  4. K. A. Mauritz and R. B. Moore, "State of Understanding of Nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  5. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, amd D. J. Cookson, "Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  6. J. C. Jansen, M. MacChione, E. Tocci, L. De Lorenzo, Y. P. Yampolskii, O. Sanfirova, V. P. Shantarovich, D. Hofmann, and E. Drioli, "Comparative Study of Different Probing Techniques for the Analysis of the Free Volume Distribution in Amorphous Glassy Perfluoropolymers", Macromolecules, 42, 7589 (2009). https://doi.org/10.1021/ma901244d
  7. F. Muller-Plathe, "Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back", Chem. Phys. Chem., 3, 754 (2002). https://doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U
  8. J. Huh and W. H. Jo, "Simulation of Self-assembled Structures in Macromolecular Systems: from Atomistic Model to Mesoscopic Model", Polymer (Korea), 30, 453 (2006).
  9. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, "Scalable Molecular Dynamics with NAMD", J. Comput. Chem., 26, 1781 (2005). https://doi.org/10.1002/jcc.20289
  10. H. Sun, "COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  11. J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, $H_2$, $O_2$, $N_2$, NO, CO, $CO_2$, $NO_2$, $CS_2$, and $SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000). https://doi.org/10.1021/jp992913p
  12. C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal Treatment Effect on the Structure and Property Change between Hydroxy-Containing Polyimides (HPIs) and Thermally Rearranged Polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012). https://doi.org/10.1021/jp307365y
  13. D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, "Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials", Macromol. Theory Simul., 9, 293 (2000). https://doi.org/10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1
  14. S. H. Han and Y. M. Lee, "Membrane Engineering for the Treatment of Gases: Volume 1: Gas-Separation Problems with Membranes", (Eds.), The Royal Society of Chemistry, p. 84-124 (2011).
  15. L. M. Robeson, B. D. Freeman, D. R. Paul, and B. W. Rowe, "An Empirical Correlation of Gas Permeability and Permselectivity in Polymers and Its Theoretical Basis", J. Membr. Sci., 341, 178 (2009). https://doi.org/10.1016/j.memsci.2009.06.005
  16. L. M. Robeson, "Correlation of Separation Factor Versus Permeability for Polymeric Membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  17. L. M. Robeson, "The Upper Bound Revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  18. V. J. Vasudevan and J. E. McGrath, "Atomistic Modeling of Amorphous Aromatic Polybenzoxazoles", Macromolecules, 29, 637 (1996). https://doi.org/10.1021/ma951133l
  19. C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A Simulation Study on OH-Containing Polyimide (HPI) and Thermally Rearranged Polybenzoxazoles (TR-PBO): Relationship between Gas Transport Properties and Free Volume Morphology", J. Phys. Chem. B, 118, 2746 (2014). https://doi.org/10.1021/jp411612g
  20. S. R. Jale, M. Bülow, F. R. Fitch, N. Perelman, and D. Shen, "Monte Carlo Simulation of Sorption Equilibria for Nitrogen and Oxygen on LiLSX $Zeolite^{\dagger}$", J. Phys. Chem. B, 104, 5272 (2000). https://doi.org/10.1021/jp993777r
  21. M. Heuchel, D. Fritsch, P. M. Budd, N. B. McKeown, and D. Hofmann, "Atomistic Packing Model and Free Volume Distribution of a Polymer with Intrinsic Microporosity (PIM-1)", J. Membr. Sci., 318, 84 (2008). https://doi.org/10.1016/j.memsci.2008.02.038
  22. D. Hofmann, M. Heuchel, Y. Yampolskii, V. Khotimskii, and V. Shantarovich, "Free Volume Distributions in Ultrahigh and Lower Free Volume Polymers: Comparison between Molecular Modeling and Positron Lifetime Studies", Macromolecules, 35, 2129 (2002). https://doi.org/10.1021/ma011360p
  23. M. Heuchel, D. Hofmann, and P. Pullumbi, "Molecular Modeling of Small-Molecule Permeation in Polyimides and Its Correlation to Free-volume Distributions", Macromolecules, 37, 201 (2004). https://doi.org/10.1021/ma035360w
  24. E. Tocci, D. Hofmann, D. Paul, N. Russo, and E. Drioli, "A Molecular Simulation Study on Gas Diffusion in a Dense Poly(ether-ether-ketone) Membrane", Polymer, 42, 521 (2001). https://doi.org/10.1016/S0032-3861(00)00102-6
  25. M. Macchione, J. C. Jansen, G. De Luca, E. Tocci, M. Longeri, and E. Drioli, "Experimental Analysis and Simulation of the Gas Transport in Dense $Hyflon^{(R)}$ AD60X Membranes: Influence of Residual Solvent", Polymer, 48, 2619 (2007). https://doi.org/10.1016/j.polymer.2007.02.068
  26. Y. Jiang, F. T. Willmore, D. Sanders, Z. P. Smith, C. P. Ribeiro, C. M. Doherty, A. Thornton, A. J. Hill, B. D. Freeman, and I. C. Sanchez, "Cavity Size, Sorption and Transport Characteristics of Thermally Rearranged (TR) Polymers", Polymer, 52, 2244 (2011). https://doi.org/10.1016/j.polymer.2011.02.035
  27. K. S. Chang, Y. H. Huang, K. R. Lee, and K. L. Tung, "Free Volume and Polymeric Structure Analyses of Aromatic Polyamide Membranes: A Molecular Simulation and Experimental Study", J. Membr. Sci., 354, 93 (2010). https://doi.org/10.1016/j.memsci.2010.02.076
  28. S. T. Kao, Y. H. Huang, K. S. Liao, W. S. Hung, K. S. Chang, M. De Guzman, S. H. Huang, D. M. Wang, K. L. Tung, K. R. Lee, and J. Y. Lai, "Applications of Positron Annihilation Spectroscopy and Molecular Dynamics Simulation to Aromatic Polyamide Pervaporation Membranes", J. Membr. Sci., 348, 117 (2010). https://doi.org/10.1016/j.memsci.2009.10.048
  29. K. S. Chang, C. C. Hsiung, C. C. Lin, and K.-L. Tung, "Residual Solvent Effects on Free Volume and Performance of Fluorinated Polyimide Membranes: A Molecular Simulation Study", J. Phys. Chem. B, 113, 10159 (2009). https://doi.org/10.1021/jp900246p
  30. K. S. Chang, C. C. Tung, K. S. Wang, and K. L. Tung, "Free Volume Analysis and Gas Transport Mechanisms of Aromatic Polyimide Membranes: A Molecular Simulation Study", J. Phys. Chem. B, 113, 9821 (2009). https://doi.org/10.1021/jp903551h
  31. H. W. Kim and H. B. Park, "Gas Transport Behavior of Polydopamine-Coated Composite Membranes", Membrane Journal, 23, 136 (2013).
  32. J. I. Ha and T. B. Kang, "Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes" , Membrane Journal, 23, 418 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.418
  33. K. B. Kim, E. H. Cho, S. I. Cheong, H. K. Lee, and J. W. Rhim, "Gas Separation Study of PEBAX 3533 and PEG Blended Membranes", Membrane Journal, 23, 144 (2013).
  34. P. A. Artola, B. Rousseau, and G. Galliero, "A New Model for Thermal Diffusion: Kinetic Approach", J. Am. Chem. Soc., 130, 10963 (2008). https://doi.org/10.1021/ja800817f