• Title/Summary/Keyword: Molecular Dynamics(MD)

Search Result 221, Processing Time 0.031 seconds

Effects of Cetyltrimethylammonium bromide on the Corrosion Inhibition of a Lead-free α-Brass by Sodium Gluconate in Sulfuric Acid

  • Jennane, Jamila;Touhami, Mohamed Ebn;Zehra, Saman;Chung, Ill-Min;Lgaz, Hassane
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • The inhibition performance of sodium gluconate (SG), cetyltrimethylammonium bromide (CTAB) and their mixture (SG/CTAB) on the corrosion behavior of ${\alpha}$-brass in 0.5 M $H_2SO_4$ solution has been investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS), Inductively Coupled Plasma Spectrometry (ICPS) and molecular dynamics (MD) simulation techniques. The results reveal that SG with 5ppm CTAB, noted SG/CTAB, acts as a good corrosion inhibitor and its inhibition efficiency reached 89% after 24 h immersion in sulfuric acid solution, but slightly decreased at higher temperatures. The polarization curves displayed that SG/CTAB acts as a cathodic-kind inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that the addition of 5ppm CTAB to different concentrations of SG considerably increases the corrosion resistance of ${\alpha}$-brass. The SEM-EDS and ICPS analyses support the experimental results. Further, molecular dynamics (MD) simulations were used to understand the adsorption profiles of SG/CTAB on Cu(111) and Zn(111) surfaces.

Computer simulation study for the effect of potential energy on the behavior of grain boundary using Molecular dynamics

  • Choi, Dong-Youl;Kim, Hyun-Soo;Kim, Young-Suk;Tomita, Yoshihiro
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.173-178
    • /
    • 1999
  • In this study MD simulations have been performed to observe the behavior of a grain boundary in an a-Fe plate under 2-dimensional loading. In MD simulation the acceleration of every molecule can be achieved from the potential energy and the force interacting between each molecule and the integration of the motion equation by using Verlet method gives the displacement of each molecule. Initially four a-Fe rectangular plates having different misorientation angles of grain boundary were modeled by using the Johnson potential and Morse potential We compared the potential energy of the grain boundary system with that of the perfect structure model. Also we could obtain the width of the grain boundary by investigating the local potential energy distribution. The tensile loading for each grain boundary models was applied and the behavior of grin boundary was studied. From this study it was clarified that in the case using Johnson potential the obvious fracture mechanism occurs along the grain boundary in the case of Morse potential the diffusion of the grain boundary appears instead of the grain boundary fracture.

  • PDF

Material modeling of the temperature rise at high-strain-rate deformation (고변형률 변형하에서 재료 내부의 온도상승 계산을 위한 재료 모델링)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.60-68
    • /
    • 2004
  • High velocity impacts are accompanied with large deformations, which generate a large amount of heat due to plastic works, resulting in a significant temperature rise of the material. Because the elevated temperature affects the dynamic properties of materials, it is important to predict the temperature rise during high-stram-rate deformations. Both existing vacancies and excess vacancies are credited to the stored energy, yet it is difficult to distinguish one from another in contribution to the stored energy using macroscopic level materials models. In this study, an atomistic material model for fee materials such as copper is set up to calculate the stored energy using molecular dynamics (MD) simulations. It is concluded that excess vacancies play an important role for the stored energy during a high-strain-rate deformation.

Review on the Computer Simulation Tools for Polymeric Membrane Researches (고분자 분리막 연구를 위한 전산모사 도구 소개)

  • Choi, Chan Hee;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2581-2587
    • /
    • 2010
  • Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.

Comparison of Protein Internal Motion by Inter-helical Motional Correlations and Hydrogen Bond Ratio

  • Kim, Byoung-Kook;Yoon, Chang-No
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.305-310
    • /
    • 2005
  • Internal motion of the protein has been described in many papers with C$_{\alpha}$ correlation coefficients to find motional correlation and functional characteristics. To describe the secondary structural motion and stability in protein, we have studied molecular dynamics (MD) simulations on FADD Death Domain and FADD Death Effector Domain which have a similar structure but have different functional characteristics. After 10ns MD simulations, the inter-helical motional correlations and the hydrogen bond ratios were compared between the two domains. From these data we could distinctly compare the internal motions of them and could explain the differences in experimental thermodynamic melting behaviors at molecular level.

  • PDF

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF