Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.242

Review on the Computer Simulation Tools for Polymeric Membrane Researches  

Choi, Chan Hee (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
Publication Information
Membrane Journal / v.30, no.4, 2020 , pp. 242-251 More about this Journal
Abstract
Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.
Keywords
polymer; polymeric membranes; computer simulation; program;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 5 (2014).
2 B. Delley, "An all-electron numerical method for solving the local density functional for polyatomic molecules", J. Chem. Phys., 92, 1, 508 (1990).   DOI
3 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. a. Swaminathan, and M. Karplus, "CHARMM: A program for macromolecular energy, minimization, and dynamics calculations", J. Comput. Chem., 4, 187 (1983).   DOI
4 A. D. MacKerell Jr, B. Brooks, C. L. Brooks III, L. Nilsson, B. Roux, Y. Won, and M. Karplus, "Encyclopedia of computational chemistry", John Wiley and Sons, New York (2002).
5 B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, and S. Boresch, "CHARMM: the biomolecular simulation program", J. Comput. Chem., 30, 1545 (2009).   DOI
6 S. Plimpton, A. Thompson, P. Crozier, and A. Kohlmeyer, "LAMMPS molecular dynamics simulator", http://lammps.sandia.gov (2011).
7 C. H. Park and S. Y. Nam, "Mesoscale simulation of polymeric membranes for energy and environmental application", Membr. J., 27, 121 (2017).   DOI
8 "Material Studio Online Help, Theory, Density functional theory", Accelrys Software Inc., San Diego (2008).
9 O. O. Wahab, L. O. Olasunkanmi, K. K. Govender, and P. P. Govender, "DMol3/COSMO-RS prediction of aqueous solubility and reactivity of selected Azo dyes: Effect of global orbital cut-off and COSMO segment variation", J. Mol. Liq., 249, 346 (2018).   DOI
10 B. Lee, D. Yun, J.-S. Lee, C. H. Park, and T.-H. Kim, "Development of highly alkaline stable $OH^-$-conductors based on imidazolium cations with various substituents for anion exchange membrane-based alkaline fuel cells", J. Phys. Chem. C, 123, 13508 (2019).   DOI
11 V. Milman, K. Refson, S. J. Clark, C. J. Pickard, J. R. Yates, S.-P. Gao, P. J. Hasnip, M. I. J. Probert, A. Perlov, and M. D. Segall, "Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation", J. Mol. Struc.: THEOCHEM, 954, 22 (2010)   DOI
12 G. Sun, J. Kurti, P. Rajczy, M. Kertesz, J. Hafner, and G. Kresse, "Performance of the vienna ab initio simulation package (VASP) in chemical applications", J. Mol. Struc.: THEOCHEM, 624, 37 (2003).   DOI
13 J. Li, J. Liu, and B. Yang, "Insights into the adsorption/desorption of $CO_2$ and CO on single-atom Fe-nitrogen-graphene catalyst under electrochemical environment", J. Energy Chem., 53, 20 (2020).
14 W. Chu, Q. Zheng, O. V. Prezhdo, and J. Zhao, "$CO_2$ photoreduction on metal oxide surface is driven by transient capture of hot electrons: Ab initio quantum dynamics simulation", J. Am. Chem. Soc., 142, 3214 (2020).   DOI
15 M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, "NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations", Comput. Phys. Commun., 81, 9 (2010).
16 Y. Qi, X. Cheng, J. Lee, J. V. Vermaas, T. V. Pogorelov, E. Tajkhorshid, S. Park, J. B. Klauda, and W. Im, "CHARMM-GUI HMMM builder for membrane simulations with the highly mobile membrane-mimetic model", Biophys. J., 109, 2012 (2015).   DOI
17 M. F. Guest, E. Apra, D. E. Bernholdt, H. A. Fruchtl, R. J. Harrison, R. A. Kendall, R. Kutteh, X. Long, J. B. Nicholas, and J. A. Nichols, "High performance computational chemistry; NWChem and fully distributed parallel applications", Adv. Parallel Comput., 10, 395 (1995).   DOI
18 H. V. Guzman, N. Tretyakov, H. Kobayashi, A. C. Fogarty, K. Kreis, J. Krajniak, C. Junghans, K. Kremer, and T. Stuehn, "ESPResSo++ 2.0: Advanced methods for multiscale molecular simulation", Comput. Phys. Commun., 238, 66 (2019).   DOI
19 H. Meirovitch, S. Cheluvaraja, and R. P. White, "Methods for calculating the entropy and free energy and their application to problems involving protein flexibility and ligand binding", Curr. Protein Pept. Sci., 10, 229 (2009).   DOI
20 V. Vermaas, T. V. Pogorelov, and E. Tajkhorshid, "Extension of the highly mobile membrane mimetic to transmembrane systems through customized in silico solvents", J. Phys. Chem. B, 121, 3764 (2017).   DOI
21 "About Gromacs", http://www.gromacs.org. (2010).
22 R. Briones, C. Blau, C. Kutzner, B. L. de Groot, and C. Aponte-Santamaria, "GROmaps: A GROMACS-based toolset to analyze density maps derived from molecular dynamics simulations", Biophys. J., 116, 1 (2019)   DOI
23 R. Briones, C. Blau, C. Kutzner, B. L. de Groot, and C. Aponte-Santamaria, "GROmaps: A GROMACS-based toolset to analyze density maps derived from molecular dynamics simulations", Biophys. J., 116, 4 (2019).   DOI
24 "BIOVIA Materials Studio overview", https://www.3ds.com/ko/products-services/biovia/ (2002).
25 C. H. Park, S. Y. Lee, and C. H. Lee, "Investigation of water channel formation in sulfonated polyimides via mesoscale simulation", Membr. J., 27, 389 (2017).   DOI
26 C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012).   DOI
27 C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil, and E. Drioli, "Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion", J. Membr. Sci., 514, 195 (2016).   DOI
28 B. Zhang, R. Liu, J. Zhang, B. Liu, and J. He, "MesoDyn simulation study of phase behavior for dye-polyether derivatives in aqueous solutions", Comput. Theor. Chem., 1091, 8 (2016).   DOI
29 A. Knoll, K. S. Lyakhova, A. Horvat, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, "Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid", Nat. Mater., 3, 886 (2004).   DOI