• Title/Summary/Keyword: Modulation Detection

Search Result 432, Processing Time 0.026 seconds

$\pi$/4 shift QPSK with Trellis-Code in Rayleigh Fading Channel (레일레이 페이딩 채널에서 Trellis 부호를 적용한 $\pi$/4 shift QPSK)

  • 김종일;이한섭;강창언
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.30-38
    • /
    • 1992
  • In this paper, in order to apply the $\pi$/4 shift QPSK to TCM, we propose the $\pi$/8 shift 8PSK modulation technique and the trellis-coded $\pi$/8 shift 8PSK performing signal set expansion and set partition by phase difference. In addition, the Viterbi decoder with branch metrics of the squared Euclidean distance of the first phase difference as well as the Lth phase difference is introduced in order to improve the bit error rate(BER) performance in differential detection of the trellis-coded $\pi$/8 shift 8 PSK. The proposed Viterbi decoder is conceptually the same as the sliding multiple de- tection by using the branch metric with first and Lth order phase difference. We investigate the performance of the uncoded .pi. /4 shift QPSK and the trellis-coded $\pi$/8 shift 8PSK with or without the Lth phase difference metric in an additive white Gaussian noise (AWGN) and Rayleigh fading channel using the Monte Carlo simulation. The study shows that the $\pi$/4 shift QPSK with the Trellis-code i. e. the trellis-coded $\pi$/8 shift 8PSK is an attractive scheme for power and bandlimited systems and especially, the Viterbi decoder with first and Lth phase difference metrics improves BER performance. Also, the next proposed algorithm can be used in the TC $\pi$/8 shift 8PSK as well as TC MDPSK.

  • PDF

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

Design of Carrier Recovery Circuit for High-Order QAM - Part I : Design and Analysis of Phase Detector with Large Frequency Acquisition Range (High-Order QAM에 적합한 반송파 동기회로 설계 - I부. 넓은 주파수 포착범위를 가지는 위상검출기 설계 및 분석)

  • Kim, Ki-Yun;Cho, Byung-Hak;Choi, Hyung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, we propose a polarity decision carrier recovery algorithm for high order QAM(Quadrature Amplitude Modulation), which has robust and large frequency acquisition performance in the high order QAM modem. The proposed polarity decision PD(Phase Detector) output and its variance characteristic are mathematically derived and the simulation results are compared with conventional DD(Decision-Directed) method. While the conventional DD algorithm has linear range of $3.5^{\circ}{\sim}3.5^{\circ}$, the proposed polarity decision PD algorithm has linear range as large as $-36^{\circ}{\sim}36^{\circ}$ at ${\gamma}-17.9$. The conventional DD algorithm can only acquire offsets less than ${\pm}10\;KHz$ in the case of the 256 QAM while an analog front-end circuit generally can reduce the carrier-frequency offset down to only ${\pm}100\;KHz$. Thus, in this case additional AFC or phase detection circuit for carrier recovery is required. But by adopting the proposed polarity decision algorithm, we can find the system can acquire up to ${\pm}300\;KHz$at SNR = 30dB without aided circuit.

  • PDF

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

A comparative study of cavitation inception of naval ship's propeller using on-board noise and vibration signals (선체 부착 소음/진동 센서를 이용한 함정 추진기 캐비테이션 초생 분석 비교 연구)

  • Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.243-249
    • /
    • 2023
  • The occurrence of cavitation on the propeller is directly linked to the naval ship's survivability, and it is necessary to design a propeller shape that delays the cavitation inception. However, the propeller cavitation can occur under various operating conditions, thus it is important to identify whether the propeller cavitation exists during operation as well as in the design phase. To this end, it is necessary to use noise or vibration signals on board to monitor the cavitation inception. In this study, a hydrophone and an accelerometer were installed on the ship hull right above the propeller to compare the performance of analyzing cavitation inception between acoustic and vibration signals. Also, a high speed camera was used to visually observe the occurrence of cavitation through an observation window. The measured results showed that the spectral shapes between acoustic and vibration signals were different, but the level increases at each frequency band and the overall level of the frequency band from 1 kHz to 10 kHz showed a similar tendency. The Detection of Envelope Modulation On Noise (DEMON) analysis also showed similar results for both acoustic and vibration signals, confirming that both hydrophones and accelerometers can be utilized in the analysis of cavitation inception.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

A Study on the Synthetic Aperture Radar Processor using AOD/CCD (AOD/CCD를 이용한 합성개구면 레이다 처리기에 관한 연구)

  • 박기환;이영훈;이영국;은재정;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1957-1964
    • /
    • 1994
  • In this thesis, a Synthetic Aperture Rarar Processor that is possible real-time handling is implemented using CW(Continuose Wave) laser as a light source, CCD(charge Coupled Device) as a time integrator, and AOD(Acousto-Optic Device) as the space integrator. One of the advantages of the proposed system is that it does not require driving circuits of the light source. To implement the system, the linear frequency modulation(chirp) technique has been used for radar signal. The received data for the unit target was processed using 7.80 board and accompanying electronic circuits. In order to reduce the smear effect of the focused chirp signal which occurs Bragg diffrection angle of the AOD has been utilized to make sharp pulses of the laser source, and the pulse made synchronized with the chirp signal. Experiment and analysis results of the data and images detected from CCD of the proposed SAR system demonstrated that detection effect is degrated as the unit target distance increases, and the resolving power is improved as the bandwidth of the chirp signal increases. Also, as the pulse width of the light source decreases, the smear effect has been reduced. The experimental results assured that the proposed system in this papre can be used as a real time SAR processor.

  • PDF

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

Optimization of coding and PRML detection scheme for perpendicular magnetic recording systems (수직 자기기록 시스템을 위한 코딩 및 PRML 검출 방법의 최적화)

  • Lee Joo hyun;Lee Jae jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.59-63
    • /
    • 2005
  • We propose non-DC-free generalized PRML (GPRML) that are suppressed DC contents for matching to the response of perpendicular magnetic recording channel with a ring-head. In addition, DC-free encoding is considered to prevent low-frequency disturbances. The SNR performance is obtained by combining the various PRML channels with DC-free and non-DC-free codes during the normalized recording density increases from 2.5 to 3.5. The GPRML detections without using DC-free code get SNR gains more than 1dB compared to the conventional PRML systems at 10/sup -5/BER. We confirmed that the rate 127/136 DC-free coded GPRML systems show good performances compared with the 16/17 non-DC-free coded GPRML systems. In results, DC-free coded GPRML detections get gains about 1.4dB and 2.0dB at the density of 3.3 and 3.5, respectively.